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Project History
• Jeff Kodosky started playing around in 2004 with the idea of verifying 

a LabVIEW program

• Warren Hunt and J Moore met on occasion with Jeff and Jacob 
Kornerup over several years, culminating with NI engaging Grant as 
an intern in 2005

• Summer 2007:  Alternate approach models LabVIEW programs, 
including loop structures, directly as ACL2 functions. At the end of the 
summer Grant left for Edinburgh and transferred his work to Mark 
Reitblatt

• Current: Approach has been fully automated, expanded and used to 
verify a dozen examples
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LabVIEW (in brief)
• Graphical dataflow language (G) with control structures

• Shift register memory elements

• Separate Front (user interface) and Back (implementation) panels

Wednesday, April 22, 2009



Why LabVIEW?

• Mostly functional

• Memory safe

• Simple control structures
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Our Approach

• Add “assertion” blocks to LabVIEW/G
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Our Approach (cont.)
• Translate LabVIEW/G diagrams into ACL2 

functions (shallow embedding)

• Each node takes a record (IN) as input

• Returns a record binding its outputs to 
terminal names

• Wires extract values from records
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Naming
• LabVIEW/G doesn’t allow naming of (most) 

nodes

• Human readability is essential to 
understanding proofs

• Auto-naming of nodes based on type
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Naming (cont.)
• Fn nodes are named as fntype-number

• ADD-1

• Constant nodes are named by value

• CONSTANT[0]-2

• Third instance of the constant ‘0’
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Naming (cont.)
• Wires are named a little differently

• Each wire retrieves one terminal from one 
node

• Wire named after its source

CONSTANT[0]-2<_T_0>
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Translation
(DEFUN-N CONSTANT[0]-0 (IN)
         (S* :|_T_0| 0))

(DEFUN-W CONSTANT[0]-0<_T_0> (IN)
         (G :|_T_0| (CONSTANT[0]-0 IN)))

(DEFUN-N INCREMENT-0 (IN)
     (S* :X+1 (1+ (CONSTANT[0]-0<_T_0> 

         IN))))

• (G :key rec) returns the value associated 
with :key in rec

• (S* :key1 val1 :key2 val2 ...) creates new 
record binding :keyi to vali
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Our Approach (cont.) 
• Translate assertions into proof obligations

(DEFTHM ASSERTION-BLOCK-HOLDS
        (IMPLIES (AND (NATP (G :NUMBER IN)))
                 (G :ASN (ASSERTION-BLOCK IN))))
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Limitations
• Currently only for-loops are automated

• We use unbounded arithmetic, so this is a 
theorem for us, but not for LabVIEW/G
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Loop Assertions
• Assertions about loops (in general) require 

inductive proofs

• We split loop assertions into “top” 
assertions and loop invariants
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Loop Assertions (cont.)
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Loop Invariant
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Loop Assertion
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Proving Loop 
Assertions

• Hold the user’s hand to prove invariants

• Autogenerate highly structured proof 
scaffolding

• Strictly guide proof process through theory 
control
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LabVIEW Loops
• We separate for-loop structures into 4 

ACL2 functions

• $step function

• Executes loop body and binds outputs to 
next iteration inputs

(DEFUN FOR-LOOP$STEP (IN) 
(S :|_T_4| (G :|_T_1| (|_N_5| IN)) IN))
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LabVIEW Loops (cont.)
• $loop function

• Compares loop counter to loop bound

• Updates loop counter and calls $step fn
(DEFUN FOR-LOOP$LOOP (N IN) 
(DECLARE (XARGS :MEASURE (NFIX (- N (G :LC IN))))) 
(COND ((OR (>= (G :LC IN) N) 

(NOT (NATP N)) 
(NOT (NATP (G :LC IN)))) 

IN) 
(T (FOR-LOOP$LOOP N (S :LC (1+ (G :LC IN)) 

(FOR-LOOP$STEP IN))))))
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LabVIEW Loops (cont.)
• $init function

• Binds loop variables to initial values

(DEFUN FOR-LOOP$LOOP$INIT (IN) 
(S* :LC 0 

:|_T_2| (CONSTANT[10]-1<_T_0> IN) 
:|_T_4| (CONSTANT[0]-0<_T_0> IN)))
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LabVIEW Loops (cont.)
• Top function

• Binds loop bound and calls $loop fn with 
results of $init fn

(DEFUN-N FOR-LOOP (IN) 
(FOR-LOOP-SRN$LOOP (CONSTANT[10]-1<_T_0> IN) 

(FOR-LOOP-SRN$LOOP$INIT IN))) 
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LabVIEW Structures
• LabVIEW loops are split into inner and 

outer structures

• Inner structures are called “Self-reference 
Nodes” (SRN)

• SRN nodes contain the body of the loop

• Outer nodes map external values to 
internal names
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Generic Theory
• We use a generic theory to avoid induction 

in the invariant proof

• Use encapsulate to define a generic 
$step, $loop and $prop (invariant)

• Prove that if $prop holds on entry to 
$loop and is preserved by $step then it 
holds when $loop is run
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Example Diagram
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Extend Loop Invariant
(DEFUN |LOOP-INV-SRN$PROP| (N IN)
  (DECLARE (IGNORABLE N))
  (AND (|LOOP-INV-SRN$HYPS| IN)
       (EQUAL N (G :|_T_3| IN))
       (G :ASN (ACL2-LOOP-INV IN))))

• LOOP-INV-SRN$HYPS is a type predicate that recognizes the 
types on the inputs to LOOP-INV-SRN

• ACL2-LOOP-INV is the name of the loop invariant
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Loop Inv. is Preserved
(DEFTHMDL |LOOP-INV-SRN$PROP{FOR-LOOP-SRN$STEP}|
  (IMPLIES (AND (NATP (G :LC IN))
                (< (G :LC IN) N)
                (|LOOP-INV-SRN$PROP| N IN))
           (|LOOP-INV-SRN$PROP| N
            (S :LC (1+ (G :LC IN))
               (|FOR-LOOP-SRN$STEP| IN)))))

• Note that this lemma is disabled
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Use Generic Theory
(DEFTHML |LOOP-INV-SRN$PROP{FOR-LOOP-SRN}|
  (IMPLIES (AND (NATP N)
                (NATP (G :LC IN))
                (|LOOP-INV-SRN$PROP| N IN))
           (|LOOP-INV-SRN$PROP| N (| FOR-LOOP-SRN$LOOP| N IN)))
  :HINTS
  (("Goal" :BY (:FUNCTIONAL-INSTANCE
                LOOP-GENERIC-THM
                (STEP-GENERIC |FOR-LOOP-SRN$STEP|)
                (PROP-GENERIC |LOOP-INV-SRN$PROP|)
                (LOOP-GENERIC |FOR-LOOP-SRN$LOOP|))
           :IN-THEORY
           (UNION-THEORIES '(|LOOP-INV-SRN$PROP{FOR-LOOP-SRN$STEP}|)
                           (THEORY 'MINIMAL-THEORY))
           :EXPAND ((|FOR-LOOP-SRN$LOOP| N IN))))
  :RULE-CLASSES NIL)
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Inv Holds on Input, with 
type hyps

(DEFTHML ACL2-LOOP-INV$INV{INIT}
  (IMPLIES (ACL2-LOOP-INV$INV{PRE} IN)
           (|LOOP-INV-SRN$PROP| (INPUT1<_T_0> IN)
            (|LOOP-INV-SRN$PROP$INIT| IN)))
  :RULE-CLASSES NIL)
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Loop Inv. Holds w/o 
type hyps

(DEFTHML ACL2-LOOP-INV$INV
  (IMPLIES (ZERO-ARRAY$INPUT-HYPS IN)
           (ACL2-LOOP-INV$INV+ IN))
  :HINTS
  (("Goal"
    :IN-THEORY
    (UNION-THEORIES '(ACL2-LOOP-INV$INV{PRE})
                    (THEORY 'MINIMAL-THEORY))
    :USE (ACL2-LOOP-INV$INV$CONDITIONAL
          ACL2-LOOP-INV$INV{PRE}{HOLDS})))
  :RULE-CLASSES NIL)
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Loop counter = Loop 
bound

(DEFTHML LC$FOR-LOOP-SRN
  (IMPLIES (AND (NATP N)
                (NATP (G :LC IN))
                (<= (G :LC IN) N))
           (EQUAL (G :LC (|FOR-LOOP-SRN$LOOP| N IN)) N))
  :HINTS (("Goal" :BY (:FUNCTIONAL-INSTANCE 
                       LOOP-GENERIC-LC
                       (STEP-GENERIC |FOR-LOOP-SRN$STEP|)
                       (PROP-GENERIC |LOOP-INV-SRN$PROP|)
                       (LOOP-GENERIC |FOR-LOOP-SRN$LOOP|))
           :IN-THEORY (THEORY 'MINIMAL-THEORY)
           :EXPAND ((|FOR-LOOP-SRN$LOOP| N IN)))))
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Top Inv. Holds

• Uses several (simple) lemmas not shown 
here

(DEFTHM ACL2-TOP-INV$INV
  (IMPLIES (GAUSS$INPUT-HYPS IN)
           (G :ASN (ACL2-TOP-INV IN)))
  :HINTS (("Goal" :IN-THEORY (DISABLE |FOR-LOOP-SRN$LOOP|)
           :USE (ACL2-LOOP-INV$INV
                 LEMMA-2-ACL2-LOOP))))
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Lemma Library

• Lemmas about LabVIEW primitives 
essential to automatic proofs

• Primitive definitions are disabled by default 
to (weakly) remove dependence upon 
defintions

• Currently ~80 theorems 
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Future Work
• Compositional Verification

• Initial Approach done by hand

• Use encapsulate to export diagram 
properties

• Use bounded arithmetic

• Use encapsulate for primitive definitions

• Diagrams containing state
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Conclusion

• Prototype system for verifying LabVIEW 
diagrams

• About a dozen (fully automatic) examples 
completed

• Feasibility of approach has been proven (for 
state-free diagrams)
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