
Formal Verification of
LabVIEW Diagrams

Matt Kaufmann

Matt Kaufmann Jacob Kornerup Mark Reitblatt

Dept. of Computer Sciences,
University of Texas

National Instruments, Inc.
Dept. of Computer Sciences,

University of Texas
National Instruments, Inc.

Wednesday, April 22, 2009

Outline

• Project History

• LabVIEW Overview

• Overview of approach

• Walk through example verification

• Conclusion

Wednesday, April 22, 2009

Project History
• Jeff Kodosky started playing around in 2004 with the idea of verifying

a LabVIEW program

• Warren Hunt and J Moore met on occasion with Jeff and Jacob
Kornerup over several years, culminating with NI engaging Grant as
an intern in 2005

• Summer 2007: Alternate approach models LabVIEW programs,
including loop structures, directly as ACL2 functions. At the end of the
summer Grant left for Edinburgh and transferred his work to Mark
Reitblatt

• Current: Approach has been fully automated, expanded and used to
verify a dozen examples

Wednesday, April 22, 2009

LabVIEW (in brief)
• Graphical dataflow language (G) with control structures

• Shift register memory elements

• Separate Front (user interface) and Back (implementation) panels

Wednesday, April 22, 2009

Why LabVIEW?

• Mostly functional

• Memory safe

• Simple control structures

Wednesday, April 22, 2009

Our Approach

• Add “assertion” blocks to LabVIEW/G

Wednesday, April 22, 2009

Our Approach (cont.)
• Translate LabVIEW/G diagrams into ACL2

functions (shallow embedding)

• Each node takes a record (IN) as input

• Returns a record binding its outputs to
terminal names

• Wires extract values from records

Wednesday, April 22, 2009

Naming
• LabVIEW/G doesn’t allow naming of (most)

nodes

• Human readability is essential to
understanding proofs

• Auto-naming of nodes based on type

Wednesday, April 22, 2009

Naming (cont.)
• Fn nodes are named as fntype-number

• ADD-1

• Constant nodes are named by value

• CONSTANT[0]-2

• Third instance of the constant ‘0’

Wednesday, April 22, 2009

Naming (cont.)
• Wires are named a little differently

• Each wire retrieves one terminal from one
node

• Wire named after its source

CONSTANT[0]-2<_T_0>

Wednesday, April 22, 2009

Translation
(DEFUN-N CONSTANT[0]-0 (IN)
 (S* :|_T_0| 0))

(DEFUN-W CONSTANT[0]-0<_T_0> (IN)
 (G :|_T_0| (CONSTANT[0]-0 IN)))

(DEFUN-N INCREMENT-0 (IN)
 (S* :X+1 (1+ (CONSTANT[0]-0<_T_0>

 IN))))

• (G :key rec) returns the value associated
with :key in rec

• (S* :key1 val1 :key2 val2 ...) creates new
record binding :keyi to vali

Wednesday, April 22, 2009

Our Approach (cont.)
• Translate assertions into proof obligations

(DEFTHM ASSERTION-BLOCK-HOLDS
 (IMPLIES (AND (NATP (G :NUMBER IN)))
 (G :ASN (ASSERTION-BLOCK IN))))

Wednesday, April 22, 2009

Limitations
• Currently only for-loops are automated

• We use unbounded arithmetic, so this is a
theorem for us, but not for LabVIEW/G

Wednesday, April 22, 2009

Loop Assertions
• Assertions about loops (in general) require

inductive proofs

• We split loop assertions into “top”
assertions and loop invariants

Wednesday, April 22, 2009

Loop Assertions (cont.)

Wednesday, April 22, 2009

Loop Invariant

Wednesday, April 22, 2009

Loop Assertion

Wednesday, April 22, 2009

Proving Loop
Assertions

• Hold the user’s hand to prove invariants

• Autogenerate highly structured proof
scaffolding

• Strictly guide proof process through theory
control

Wednesday, April 22, 2009

LabVIEW Loops
• We separate for-loop structures into 4

ACL2 functions

• $step function

• Executes loop body and binds outputs to
next iteration inputs

(DEFUN FOR-LOOP$STEP (IN)
(S :|_T_4| (G :|_T_1| (|_N_5| IN)) IN))

Wednesday, April 22, 2009

LabVIEW Loops (cont.)
• $loop function

• Compares loop counter to loop bound

• Updates loop counter and calls $step fn
(DEFUN FOR-LOOP$LOOP (N IN)
(DECLARE (XARGS :MEASURE (NFIX (- N (G :LC IN)))))
(COND ((OR (>= (G :LC IN) N)

(NOT (NATP N))
(NOT (NATP (G :LC IN))))

IN)
(T (FOR-LOOP$LOOP N (S :LC (1+ (G :LC IN))

(FOR-LOOP$STEP IN))))))

Wednesday, April 22, 2009

LabVIEW Loops (cont.)
• $init function

• Binds loop variables to initial values

(DEFUN FOR-LOOP$LOOP$INIT (IN)
(S* :LC 0

:|_T_2| (CONSTANT[10]-1<_T_0> IN)
:|_T_4| (CONSTANT[0]-0<_T_0> IN)))

Wednesday, April 22, 2009

LabVIEW Loops (cont.)
• Top function

• Binds loop bound and calls $loop fn with
results of $init fn

(DEFUN-N FOR-LOOP (IN)
(FOR-LOOP-SRN$LOOP (CONSTANT[10]-1<_T_0> IN)

(FOR-LOOP-SRN$LOOP$INIT IN)))

Wednesday, April 22, 2009

LabVIEW Structures
• LabVIEW loops are split into inner and

outer structures

• Inner structures are called “Self-reference
Nodes” (SRN)

• SRN nodes contain the body of the loop

• Outer nodes map external values to
internal names

Wednesday, April 22, 2009

Generic Theory
• We use a generic theory to avoid induction

in the invariant proof

• Use encapsulate to define a generic
$step, $loop and $prop (invariant)

• Prove that if $prop holds on entry to
$loop and is preserved by $step then it
holds when $loop is run

Wednesday, April 22, 2009

Example Diagram

Wednesday, April 22, 2009

Extend Loop Invariant
(DEFUN |LOOP-INV-SRN$PROP| (N IN)
 (DECLARE (IGNORABLE N))
 (AND (|LOOP-INV-SRN$HYPS| IN)
 (EQUAL N (G :|_T_3| IN))
 (G :ASN (ACL2-LOOP-INV IN))))

• LOOP-INV-SRN$HYPS is a type predicate that recognizes the
types on the inputs to LOOP-INV-SRN

• ACL2-LOOP-INV is the name of the loop invariant

Wednesday, April 22, 2009

Loop Inv. is Preserved
(DEFTHMDL |LOOP-INV-SRN$PROP{FOR-LOOP-SRN$STEP}|
 (IMPLIES (AND (NATP (G :LC IN))
 (< (G :LC IN) N)
 (|LOOP-INV-SRN$PROP| N IN))
 (|LOOP-INV-SRN$PROP| N
 (S :LC (1+ (G :LC IN))
 (|FOR-LOOP-SRN$STEP| IN)))))

• Note that this lemma is disabled

Wednesday, April 22, 2009

Use Generic Theory
(DEFTHML |LOOP-INV-SRN$PROP{FOR-LOOP-SRN}|
 (IMPLIES (AND (NATP N)
 (NATP (G :LC IN))
 (|LOOP-INV-SRN$PROP| N IN))
 (|LOOP-INV-SRN$PROP| N (| FOR-LOOP-SRN$LOOP| N IN)))
 :HINTS
 (("Goal" :BY (:FUNCTIONAL-INSTANCE
 LOOP-GENERIC-THM
 (STEP-GENERIC |FOR-LOOP-SRN$STEP|)
 (PROP-GENERIC |LOOP-INV-SRN$PROP|)
 (LOOP-GENERIC |FOR-LOOP-SRN$LOOP|))
 :IN-THEORY
 (UNION-THEORIES '(|LOOP-INV-SRN$PROP{FOR-LOOP-SRN$STEP}|)
 (THEORY 'MINIMAL-THEORY))
 :EXPAND ((|FOR-LOOP-SRN$LOOP| N IN))))
 :RULE-CLASSES NIL)

Wednesday, April 22, 2009

Inv Holds on Input, with
type hyps

(DEFTHML ACL2-LOOP-INV$INV{INIT}
 (IMPLIES (ACL2-LOOP-INV$INV{PRE} IN)
 (|LOOP-INV-SRN$PROP| (INPUT1<_T_0> IN)
 (|LOOP-INV-SRN$PROP$INIT| IN)))
 :RULE-CLASSES NIL)

Wednesday, April 22, 2009

Loop Inv. Holds w/o
type hyps

(DEFTHML ACL2-LOOP-INV$INV
 (IMPLIES (ZERO-ARRAY$INPUT-HYPS IN)
 (ACL2-LOOP-INV$INV+ IN))
 :HINTS
 (("Goal"
 :IN-THEORY
 (UNION-THEORIES '(ACL2-LOOP-INV$INV{PRE})
 (THEORY 'MINIMAL-THEORY))
 :USE (ACL2-LOOP-INVINVCONDITIONAL
 ACL2-LOOP-INV$INV{PRE}{HOLDS})))
 :RULE-CLASSES NIL)

Wednesday, April 22, 2009

Loop counter = Loop
bound

(DEFTHML LC$FOR-LOOP-SRN
 (IMPLIES (AND (NATP N)
 (NATP (G :LC IN))
 (<= (G :LC IN) N))
 (EQUAL (G :LC (|FOR-LOOP-SRN$LOOP| N IN)) N))
 :HINTS (("Goal" :BY (:FUNCTIONAL-INSTANCE
 LOOP-GENERIC-LC
 (STEP-GENERIC |FOR-LOOP-SRN$STEP|)
 (PROP-GENERIC |LOOP-INV-SRN$PROP|)
 (LOOP-GENERIC |FOR-LOOP-SRN$LOOP|))
 :IN-THEORY (THEORY 'MINIMAL-THEORY)
 :EXPAND ((|FOR-LOOP-SRN$LOOP| N IN)))))

Wednesday, April 22, 2009

Top Inv. Holds

• Uses several (simple) lemmas not shown
here

(DEFTHM ACL2-TOP-INV$INV
 (IMPLIES (GAUSS$INPUT-HYPS IN)
 (G :ASN (ACL2-TOP-INV IN)))
 :HINTS (("Goal" :IN-THEORY (DISABLE |FOR-LOOP-SRN$LOOP|)
 :USE (ACL2-LOOP-INV$INV
 LEMMA-2-ACL2-LOOP))))

Wednesday, April 22, 2009

Lemma Library

• Lemmas about LabVIEW primitives
essential to automatic proofs

• Primitive definitions are disabled by default
to (weakly) remove dependence upon
defintions

• Currently ~80 theorems

Wednesday, April 22, 2009

Future Work
• Compositional Verification

• Initial Approach done by hand

• Use encapsulate to export diagram
properties

• Use bounded arithmetic

• Use encapsulate for primitive definitions

• Diagrams containing state

Wednesday, April 22, 2009

Conclusion

• Prototype system for verifying LabVIEW
diagrams

• About a dozen (fully automatic) examples
completed

• Feasibility of approach has been proven (for
state-free diagrams)

Wednesday, April 22, 2009

