
FatTire: Declarative Fault
Tolerance for SDN

1

Mark Reitblatt (Cornell)
Marco Canini (TU Berlin → UC Louvain)
Arjun Guha (Cornell → UMass Amherst)
Nate Foster (Cornell)

Friday, August 16, 13

2

In a Perfect World...

Friday, August 16, 13

But in Reality...

3

Friday, August 16, 13

Fault-Tolerance Mechanisms
Traditional Networks
• MPLS local path protection
• Global path protection
• IEEE 802.1ag
• and others...

Software-Defined Networks
• Controller reacts to failures
• Fast failover group actions (OpenFlow 1.1+)

4

Friday, August 16, 13

GW

S1

S2

IDS A

Figure 1: Example network.

• We present the design of a new language for writ-
ing fault-tolerant SDN programs that provides paths
as a basic programming construct (§3).

• We describe algorithms for compiling FatTire pro-
grams to OpenFlow switches that take advantage
of in-network fast-failover mechanisms (§4).

• We develop techniques for analyzing OpenFlow switch
configurations to check that they provide the re-
quired degree of fault tolerance (§5).

The next section presents a practical example that mo-
tivates the need for declarative fault-tolerance program-
ming abstractions. The following sections describe our
main contributions in detail. We then describe our pro-
totype implementation of FatTire as an extension of the
NetCore compiler (§6).

2. PROGRAMMING FAULT TOLERANCE
As motivation, consider the enterprise network shown
in fig. 1 and assume we want to construct a configura-
tion with the following properties: (i) SSH tra�c ar-
riving at the gateway switch (GW) should be eventu-
ally delivered to the access switch (A), (ii) all incoming
SSH tra�c should traverse the middlebox (IDS) before
being reaching internal hosts, (iii) the network should
continue to forward SSH tra�c even if a single link fails.

It is easy to build a configuration that has the first
two properties. For instance, we can forward incom-
ing SSH tra�c along the path [GW,S1,IDS,S2,A]. But
to provide the specified fault-tolerance property, each
of the links in this primary path also needs a backup.
There are numerous possible backup paths,

• [GW,S2,IDS,S2,A] if (GW, S1) fails,

• [GW,S1,S2,IDS,S2,A] if (S1, IDS) fails,

• [GW,S1,IDS,S1,A] if (IDS, S2) fails, and

• [GW,S1,IDS,S2,S1,A] if (S2, A) fails.

Even worse, if the policy required protection against two
link failures then we would also need backup links for
these backup paths; three failures would require back-
ups for our backups for our backups, and so on.

GW Ruletable and Grouptable

Match Instructions

tpDst = 22 Group 1

Group Type Actions

1 FF hFwd S1i, hFwd S2i

S1 Ruletable and Grouptable

Match Instructions

inPort = GW, tpDst = 22 Group 1

inPort = IDS, tpDst = 22 Group 2

inPort = S2, tpDst = 22 Group 2

Group Type Actions

1 FF hFwd IDSi, hFwd S2i
2 FF hFwd Ai

S2 Ruletable and Grouptable

Match Instructions

inPort = IDS, tpDst = 22 Group 1

inPort = S1, tpDst = 22 Group 2

inPort = GW, tpDst = 22 Group 2

Group Type Actions

1 FF hFwd Ai, hFwd S1i
2 FF hFwd IDSi

Figure 2: Example ruletables and grouptables.

Even this simple example requires a non-trivial pro-
gram. For example, tra�c can reach S1 and S2 under
at least four di↵erent scenarios. To ensure that tra�c is
handled correctly in every possible case, it is necessary
to take into account all possible interactions between
primary and backup paths—a tedious and error-prone
task for the network programmer.

OpenFlow. To illustrate the complexity of constructing
fault-tolerant configurations manually, let us see how we
would do this in OpenFlow. The following rule imple-
ments the primary path for SSH tra�c on switch S1:

Match Actions

inPort = GW, tpDst = 22 hFwd IDSi

It consists of a match that specifies packet attributes
(e.g., transport destination port 22 for SSH tra�c) and
a list of actions that specify how to process matching
packets. In this case, the rule states that all SSH traf-
fic coming from GW should be forwarded to IDS. For
simplicity, we have replaced the names of ports with
the switches they are connected to—e.g., we replace the
name of the port connecting S1 to GW with GW.

Configuration updates. Early versions of OpenFlow did
not support rules that depend upon switch state—e.g.,
rules that test whether a link has failed or not. Hence,
the only way to respond to failures was for the con-
troller to explicitly intercede by installing new rules in
response to the failure. For example, if the switch S1
detected a failure on the link to IDS, it would notify the

2

• Connectivity from GW to A

• SSH traffic traverses IDS

• SSH is 1-link fault tolerant

Traffic
5

Friday, August 16, 13

GW

S1

S2

IDS A

Figure 1: Example network.

• We present the design of a new language for writ-
ing fault-tolerant SDN programs that provides paths
as a basic programming construct (§3).

• We describe algorithms for compiling FatTire pro-
grams to OpenFlow switches that take advantage
of in-network fast-failover mechanisms (§4).

• We develop techniques for analyzing OpenFlow switch
configurations to check that they provide the re-
quired degree of fault tolerance (§5).

The next section presents a practical example that mo-
tivates the need for declarative fault-tolerance program-
ming abstractions. The following sections describe our
main contributions in detail. We then describe our pro-
totype implementation of FatTire as an extension of the
NetCore compiler (§6).

2. PROGRAMMING FAULT TOLERANCE
As motivation, consider the enterprise network shown
in fig. 1 and assume we want to construct a configura-
tion with the following properties: (i) SSH tra�c ar-
riving at the gateway switch (GW) should be eventu-
ally delivered to the access switch (A), (ii) all incoming
SSH tra�c should traverse the middlebox (IDS) before
being reaching internal hosts, (iii) the network should
continue to forward SSH tra�c even if a single link fails.

It is easy to build a configuration that has the first
two properties. For instance, we can forward incom-
ing SSH tra�c along the path [GW,S1,IDS,S2,A]. But
to provide the specified fault-tolerance property, each
of the links in this primary path also needs a backup.
There are numerous possible backup paths,

• [GW,S2,IDS,S2,A] if (GW, S1) fails,

• [GW,S1,S2,IDS,S2,A] if (S1, IDS) fails,

• [GW,S1,IDS,S1,A] if (IDS, S2) fails, and

• [GW,S1,IDS,S2,S1,A] if (S2, A) fails.

Even worse, if the policy required protection against two
link failures then we would also need backup links for
these backup paths; three failures would require back-
ups for our backups for our backups, and so on.

GW Ruletable and Grouptable

Match Instructions

tpDst = 22 Group 1

Group Type Actions

1 FF hFwd S1i, hFwd S2i

S1 Ruletable and Grouptable

Match Instructions

inPort = GW, tpDst = 22 Group 1

inPort = IDS, tpDst = 22 Group 2

inPort = S2, tpDst = 22 Group 2

Group Type Actions

1 FF hFwd IDSi, hFwd S2i
2 FF hFwd Ai

S2 Ruletable and Grouptable

Match Instructions

inPort = IDS, tpDst = 22 Group 1

inPort = S1, tpDst = 22 Group 2

inPort = GW, tpDst = 22 Group 2

Group Type Actions

1 FF hFwd Ai, hFwd S1i
2 FF hFwd IDSi

Figure 2: Example ruletables and grouptables.

Even this simple example requires a non-trivial pro-
gram. For example, tra�c can reach S1 and S2 under
at least four di↵erent scenarios. To ensure that tra�c is
handled correctly in every possible case, it is necessary
to take into account all possible interactions between
primary and backup paths—a tedious and error-prone
task for the network programmer.

OpenFlow. To illustrate the complexity of constructing
fault-tolerant configurations manually, let us see how we
would do this in OpenFlow. The following rule imple-
ments the primary path for SSH tra�c on switch S1:

Match Actions

inPort = GW, tpDst = 22 hFwd IDSi

It consists of a match that specifies packet attributes
(e.g., transport destination port 22 for SSH tra�c) and
a list of actions that specify how to process matching
packets. In this case, the rule states that all SSH traf-
fic coming from GW should be forwarded to IDS. For
simplicity, we have replaced the names of ports with
the switches they are connected to—e.g., we replace the
name of the port connecting S1 to GW with GW.

Configuration updates. Early versions of OpenFlow did
not support rules that depend upon switch state—e.g.,
rules that test whether a link has failed or not. Hence,
the only way to respond to failures was for the con-
troller to explicitly intercede by installing new rules in
response to the failure. For example, if the switch S1
detected a failure on the link to IDS, it would notify the

2

• Connectivity from GW to A

• SSH traffic traverses IDS

• SSH is 1-link fault tolerant

Traffic
5

Friday, August 16, 13

GW

S1

S2

IDS A

Figure 1: Example network.

• We present the design of a new language for writ-
ing fault-tolerant SDN programs that provides paths
as a basic programming construct (§3).

• We describe algorithms for compiling FatTire pro-
grams to OpenFlow switches that take advantage
of in-network fast-failover mechanisms (§4).

• We develop techniques for analyzing OpenFlow switch
configurations to check that they provide the re-
quired degree of fault tolerance (§5).

The next section presents a practical example that mo-
tivates the need for declarative fault-tolerance program-
ming abstractions. The following sections describe our
main contributions in detail. We then describe our pro-
totype implementation of FatTire as an extension of the
NetCore compiler (§6).

2. PROGRAMMING FAULT TOLERANCE
As motivation, consider the enterprise network shown
in fig. 1 and assume we want to construct a configura-
tion with the following properties: (i) SSH tra�c ar-
riving at the gateway switch (GW) should be eventu-
ally delivered to the access switch (A), (ii) all incoming
SSH tra�c should traverse the middlebox (IDS) before
being reaching internal hosts, (iii) the network should
continue to forward SSH tra�c even if a single link fails.

It is easy to build a configuration that has the first
two properties. For instance, we can forward incom-
ing SSH tra�c along the path [GW,S1,IDS,S2,A]. But
to provide the specified fault-tolerance property, each
of the links in this primary path also needs a backup.
There are numerous possible backup paths,

• [GW,S2,IDS,S2,A] if (GW, S1) fails,

• [GW,S1,S2,IDS,S2,A] if (S1, IDS) fails,

• [GW,S1,IDS,S1,A] if (IDS, S2) fails, and

• [GW,S1,IDS,S2,S1,A] if (S2, A) fails.

Even worse, if the policy required protection against two
link failures then we would also need backup links for
these backup paths; three failures would require back-
ups for our backups for our backups, and so on.

GW Ruletable and Grouptable

Match Instructions

tpDst = 22 Group 1

Group Type Actions

1 FF hFwd S1i, hFwd S2i

S1 Ruletable and Grouptable

Match Instructions

inPort = GW, tpDst = 22 Group 1

inPort = IDS, tpDst = 22 Group 2

inPort = S2, tpDst = 22 Group 2

Group Type Actions

1 FF hFwd IDSi, hFwd S2i
2 FF hFwd Ai

S2 Ruletable and Grouptable

Match Instructions

inPort = IDS, tpDst = 22 Group 1

inPort = S1, tpDst = 22 Group 2

inPort = GW, tpDst = 22 Group 2

Group Type Actions

1 FF hFwd Ai, hFwd S1i
2 FF hFwd IDSi

Figure 2: Example ruletables and grouptables.

Even this simple example requires a non-trivial pro-
gram. For example, tra�c can reach S1 and S2 under
at least four di↵erent scenarios. To ensure that tra�c is
handled correctly in every possible case, it is necessary
to take into account all possible interactions between
primary and backup paths—a tedious and error-prone
task for the network programmer.

OpenFlow. To illustrate the complexity of constructing
fault-tolerant configurations manually, let us see how we
would do this in OpenFlow. The following rule imple-
ments the primary path for SSH tra�c on switch S1:

Match Actions

inPort = GW, tpDst = 22 hFwd IDSi

It consists of a match that specifies packet attributes
(e.g., transport destination port 22 for SSH tra�c) and
a list of actions that specify how to process matching
packets. In this case, the rule states that all SSH traf-
fic coming from GW should be forwarded to IDS. For
simplicity, we have replaced the names of ports with
the switches they are connected to—e.g., we replace the
name of the port connecting S1 to GW with GW.

Configuration updates. Early versions of OpenFlow did
not support rules that depend upon switch state—e.g.,
rules that test whether a link has failed or not. Hence,
the only way to respond to failures was for the con-
troller to explicitly intercede by installing new rules in
response to the failure. For example, if the switch S1
detected a failure on the link to IDS, it would notify the

2

• Connectivity from GW to A

• SSH traffic traverses IDS

• SSH is 1-link fault tolerant

Traffic
5

Friday, August 16, 13

GW

S1

S2

IDS A

Figure 1: Example network.

• We present the design of a new language for writ-
ing fault-tolerant SDN programs that provides paths
as a basic programming construct (§3).

• We describe algorithms for compiling FatTire pro-
grams to OpenFlow switches that take advantage
of in-network fast-failover mechanisms (§4).

• We develop techniques for analyzing OpenFlow switch
configurations to check that they provide the re-
quired degree of fault tolerance (§5).

The next section presents a practical example that mo-
tivates the need for declarative fault-tolerance program-
ming abstractions. The following sections describe our
main contributions in detail. We then describe our pro-
totype implementation of FatTire as an extension of the
NetCore compiler (§6).

2. PROGRAMMING FAULT TOLERANCE
As motivation, consider the enterprise network shown
in fig. 1 and assume we want to construct a configura-
tion with the following properties: (i) SSH tra�c ar-
riving at the gateway switch (GW) should be eventu-
ally delivered to the access switch (A), (ii) all incoming
SSH tra�c should traverse the middlebox (IDS) before
being reaching internal hosts, (iii) the network should
continue to forward SSH tra�c even if a single link fails.

It is easy to build a configuration that has the first
two properties. For instance, we can forward incom-
ing SSH tra�c along the path [GW,S1,IDS,S2,A]. But
to provide the specified fault-tolerance property, each
of the links in this primary path also needs a backup.
There are numerous possible backup paths,

• [GW,S2,IDS,S2,A] if (GW, S1) fails,

• [GW,S1,S2,IDS,S2,A] if (S1, IDS) fails,

• [GW,S1,IDS,S1,A] if (IDS, S2) fails, and

• [GW,S1,IDS,S2,S1,A] if (S2, A) fails.

Even worse, if the policy required protection against two
link failures then we would also need backup links for
these backup paths; three failures would require back-
ups for our backups for our backups, and so on.

GW Ruletable and Grouptable

Match Instructions

tpDst = 22 Group 1

Group Type Actions

1 FF hFwd S1i, hFwd S2i

S1 Ruletable and Grouptable

Match Instructions

inPort = GW, tpDst = 22 Group 1

inPort = IDS, tpDst = 22 Group 2

inPort = S2, tpDst = 22 Group 2

Group Type Actions

1 FF hFwd IDSi, hFwd S2i
2 FF hFwd Ai

S2 Ruletable and Grouptable

Match Instructions

inPort = IDS, tpDst = 22 Group 1

inPort = S1, tpDst = 22 Group 2

inPort = GW, tpDst = 22 Group 2

Group Type Actions

1 FF hFwd Ai, hFwd S1i
2 FF hFwd IDSi

Figure 2: Example ruletables and grouptables.

Even this simple example requires a non-trivial pro-
gram. For example, tra�c can reach S1 and S2 under
at least four di↵erent scenarios. To ensure that tra�c is
handled correctly in every possible case, it is necessary
to take into account all possible interactions between
primary and backup paths—a tedious and error-prone
task for the network programmer.

OpenFlow. To illustrate the complexity of constructing
fault-tolerant configurations manually, let us see how we
would do this in OpenFlow. The following rule imple-
ments the primary path for SSH tra�c on switch S1:

Match Actions

inPort = GW, tpDst = 22 hFwd IDSi

It consists of a match that specifies packet attributes
(e.g., transport destination port 22 for SSH tra�c) and
a list of actions that specify how to process matching
packets. In this case, the rule states that all SSH traf-
fic coming from GW should be forwarded to IDS. For
simplicity, we have replaced the names of ports with
the switches they are connected to—e.g., we replace the
name of the port connecting S1 to GW with GW.

Configuration updates. Early versions of OpenFlow did
not support rules that depend upon switch state—e.g.,
rules that test whether a link has failed or not. Hence,
the only way to respond to failures was for the con-
troller to explicitly intercede by installing new rules in
response to the failure. For example, if the switch S1
detected a failure on the link to IDS, it would notify the

2

• Connectivity from GW to A

• SSH traffic traverses IDS

• SSH is 1-link fault tolerant

Traffic
5

Friday, August 16, 13

GW

S1

S2

IDS A

Figure 1: Example network.

• We present the design of a new language for writ-
ing fault-tolerant SDN programs that provides paths
as a basic programming construct (§3).

• We describe algorithms for compiling FatTire pro-
grams to OpenFlow switches that take advantage
of in-network fast-failover mechanisms (§4).

• We develop techniques for analyzing OpenFlow switch
configurations to check that they provide the re-
quired degree of fault tolerance (§5).

The next section presents a practical example that mo-
tivates the need for declarative fault-tolerance program-
ming abstractions. The following sections describe our
main contributions in detail. We then describe our pro-
totype implementation of FatTire as an extension of the
NetCore compiler (§6).

2. PROGRAMMING FAULT TOLERANCE
As motivation, consider the enterprise network shown
in fig. 1 and assume we want to construct a configura-
tion with the following properties: (i) SSH tra�c ar-
riving at the gateway switch (GW) should be eventu-
ally delivered to the access switch (A), (ii) all incoming
SSH tra�c should traverse the middlebox (IDS) before
being reaching internal hosts, (iii) the network should
continue to forward SSH tra�c even if a single link fails.

It is easy to build a configuration that has the first
two properties. For instance, we can forward incom-
ing SSH tra�c along the path [GW,S1,IDS,S2,A]. But
to provide the specified fault-tolerance property, each
of the links in this primary path also needs a backup.
There are numerous possible backup paths,

• [GW,S2,IDS,S2,A] if (GW, S1) fails,

• [GW,S1,S2,IDS,S2,A] if (S1, IDS) fails,

• [GW,S1,IDS,S1,A] if (IDS, S2) fails, and

• [GW,S1,IDS,S2,S1,A] if (S2, A) fails.

Even worse, if the policy required protection against two
link failures then we would also need backup links for
these backup paths; three failures would require back-
ups for our backups for our backups, and so on.

GW Ruletable and Grouptable

Match Instructions

tpDst = 22 Group 1

Group Type Actions

1 FF hFwd S1i, hFwd S2i

S1 Ruletable and Grouptable

Match Instructions

inPort = GW, tpDst = 22 Group 1

inPort = IDS, tpDst = 22 Group 2

inPort = S2, tpDst = 22 Group 2

Group Type Actions

1 FF hFwd IDSi, hFwd S2i
2 FF hFwd Ai

S2 Ruletable and Grouptable

Match Instructions

inPort = IDS, tpDst = 22 Group 1

inPort = S1, tpDst = 22 Group 2

inPort = GW, tpDst = 22 Group 2

Group Type Actions

1 FF hFwd Ai, hFwd S1i
2 FF hFwd IDSi

Figure 2: Example ruletables and grouptables.

Even this simple example requires a non-trivial pro-
gram. For example, tra�c can reach S1 and S2 under
at least four di↵erent scenarios. To ensure that tra�c is
handled correctly in every possible case, it is necessary
to take into account all possible interactions between
primary and backup paths—a tedious and error-prone
task for the network programmer.

OpenFlow. To illustrate the complexity of constructing
fault-tolerant configurations manually, let us see how we
would do this in OpenFlow. The following rule imple-
ments the primary path for SSH tra�c on switch S1:

Match Actions

inPort = GW, tpDst = 22 hFwd IDSi

It consists of a match that specifies packet attributes
(e.g., transport destination port 22 for SSH tra�c) and
a list of actions that specify how to process matching
packets. In this case, the rule states that all SSH traf-
fic coming from GW should be forwarded to IDS. For
simplicity, we have replaced the names of ports with
the switches they are connected to—e.g., we replace the
name of the port connecting S1 to GW with GW.

Configuration updates. Early versions of OpenFlow did
not support rules that depend upon switch state—e.g.,
rules that test whether a link has failed or not. Hence,
the only way to respond to failures was for the con-
troller to explicitly intercede by installing new rules in
response to the failure. For example, if the switch S1
detected a failure on the link to IDS, it would notify the

2

• Connectivity from GW to A

• SSH traffic traverses IDS

• SSH is 1-link fault tolerant

Traffic
5

Friday, August 16, 13

GW

S1

S2

IDS A

Figure 1: Example network.

• We present the design of a new language for writ-
ing fault-tolerant SDN programs that provides paths
as a basic programming construct (§3).

• We describe algorithms for compiling FatTire pro-
grams to OpenFlow switches that take advantage
of in-network fast-failover mechanisms (§4).

• We develop techniques for analyzing OpenFlow switch
configurations to check that they provide the re-
quired degree of fault tolerance (§5).

The next section presents a practical example that mo-
tivates the need for declarative fault-tolerance program-
ming abstractions. The following sections describe our
main contributions in detail. We then describe our pro-
totype implementation of FatTire as an extension of the
NetCore compiler (§6).

2. PROGRAMMING FAULT TOLERANCE
As motivation, consider the enterprise network shown
in fig. 1 and assume we want to construct a configura-
tion with the following properties: (i) SSH tra�c ar-
riving at the gateway switch (GW) should be eventu-
ally delivered to the access switch (A), (ii) all incoming
SSH tra�c should traverse the middlebox (IDS) before
being reaching internal hosts, (iii) the network should
continue to forward SSH tra�c even if a single link fails.

It is easy to build a configuration that has the first
two properties. For instance, we can forward incom-
ing SSH tra�c along the path [GW,S1,IDS,S2,A]. But
to provide the specified fault-tolerance property, each
of the links in this primary path also needs a backup.
There are numerous possible backup paths,

• [GW,S2,IDS,S2,A] if (GW, S1) fails,

• [GW,S1,S2,IDS,S2,A] if (S1, IDS) fails,

• [GW,S1,IDS,S1,A] if (IDS, S2) fails, and

• [GW,S1,IDS,S2,S1,A] if (S2, A) fails.

Even worse, if the policy required protection against two
link failures then we would also need backup links for
these backup paths; three failures would require back-
ups for our backups for our backups, and so on.

GW Ruletable and Grouptable

Match Instructions

tpDst = 22 Group 1

Group Type Actions

1 FF hFwd S1i, hFwd S2i

S1 Ruletable and Grouptable

Match Instructions

inPort = GW, tpDst = 22 Group 1

inPort = IDS, tpDst = 22 Group 2

inPort = S2, tpDst = 22 Group 2

Group Type Actions

1 FF hFwd IDSi, hFwd S2i
2 FF hFwd Ai

S2 Ruletable and Grouptable

Match Instructions

inPort = IDS, tpDst = 22 Group 1

inPort = S1, tpDst = 22 Group 2

inPort = GW, tpDst = 22 Group 2

Group Type Actions

1 FF hFwd Ai, hFwd S1i
2 FF hFwd IDSi

Figure 2: Example ruletables and grouptables.

Even this simple example requires a non-trivial pro-
gram. For example, tra�c can reach S1 and S2 under
at least four di↵erent scenarios. To ensure that tra�c is
handled correctly in every possible case, it is necessary
to take into account all possible interactions between
primary and backup paths—a tedious and error-prone
task for the network programmer.

OpenFlow. To illustrate the complexity of constructing
fault-tolerant configurations manually, let us see how we
would do this in OpenFlow. The following rule imple-
ments the primary path for SSH tra�c on switch S1:

Match Actions

inPort = GW, tpDst = 22 hFwd IDSi

It consists of a match that specifies packet attributes
(e.g., transport destination port 22 for SSH tra�c) and
a list of actions that specify how to process matching
packets. In this case, the rule states that all SSH traf-
fic coming from GW should be forwarded to IDS. For
simplicity, we have replaced the names of ports with
the switches they are connected to—e.g., we replace the
name of the port connecting S1 to GW with GW.

Configuration updates. Early versions of OpenFlow did
not support rules that depend upon switch state—e.g.,
rules that test whether a link has failed or not. Hence,
the only way to respond to failures was for the con-
troller to explicitly intercede by installing new rules in
response to the failure. For example, if the switch S1
detected a failure on the link to IDS, it would notify the

2

• Connectivity from GW to A

• SSH traffic traverses IDS

• SSH is 1-link fault tolerant

Traffic
5

Friday, August 16, 13

GW

S1

S2

IDS A

Figure 1: Example network.

• We present the design of a new language for writ-
ing fault-tolerant SDN programs that provides paths
as a basic programming construct (§3).

• We describe algorithms for compiling FatTire pro-
grams to OpenFlow switches that take advantage
of in-network fast-failover mechanisms (§4).

• We develop techniques for analyzing OpenFlow switch
configurations to check that they provide the re-
quired degree of fault tolerance (§5).

The next section presents a practical example that mo-
tivates the need for declarative fault-tolerance program-
ming abstractions. The following sections describe our
main contributions in detail. We then describe our pro-
totype implementation of FatTire as an extension of the
NetCore compiler (§6).

2. PROGRAMMING FAULT TOLERANCE
As motivation, consider the enterprise network shown
in fig. 1 and assume we want to construct a configura-
tion with the following properties: (i) SSH tra�c ar-
riving at the gateway switch (GW) should be eventu-
ally delivered to the access switch (A), (ii) all incoming
SSH tra�c should traverse the middlebox (IDS) before
being reaching internal hosts, (iii) the network should
continue to forward SSH tra�c even if a single link fails.

It is easy to build a configuration that has the first
two properties. For instance, we can forward incom-
ing SSH tra�c along the path [GW,S1,IDS,S2,A]. But
to provide the specified fault-tolerance property, each
of the links in this primary path also needs a backup.
There are numerous possible backup paths,

• [GW,S2,IDS,S2,A] if (GW, S1) fails,

• [GW,S1,S2,IDS,S2,A] if (S1, IDS) fails,

• [GW,S1,IDS,S1,A] if (IDS, S2) fails, and

• [GW,S1,IDS,S2,S1,A] if (S2, A) fails.

Even worse, if the policy required protection against two
link failures then we would also need backup links for
these backup paths; three failures would require back-
ups for our backups for our backups, and so on.

GW Ruletable and Grouptable

Match Instructions

tpDst = 22 Group 1

Group Type Actions

1 FF hFwd S1i, hFwd S2i

S1 Ruletable and Grouptable

Match Instructions

inPort = GW, tpDst = 22 Group 1

inPort = IDS, tpDst = 22 Group 2

inPort = S2, tpDst = 22 Group 2

Group Type Actions

1 FF hFwd IDSi, hFwd S2i
2 FF hFwd Ai

S2 Ruletable and Grouptable

Match Instructions

inPort = IDS, tpDst = 22 Group 1

inPort = S1, tpDst = 22 Group 2

inPort = GW, tpDst = 22 Group 2

Group Type Actions

1 FF hFwd Ai, hFwd S1i
2 FF hFwd IDSi

Figure 2: Example ruletables and grouptables.

Even this simple example requires a non-trivial pro-
gram. For example, tra�c can reach S1 and S2 under
at least four di↵erent scenarios. To ensure that tra�c is
handled correctly in every possible case, it is necessary
to take into account all possible interactions between
primary and backup paths—a tedious and error-prone
task for the network programmer.

OpenFlow. To illustrate the complexity of constructing
fault-tolerant configurations manually, let us see how we
would do this in OpenFlow. The following rule imple-
ments the primary path for SSH tra�c on switch S1:

Match Actions

inPort = GW, tpDst = 22 hFwd IDSi

It consists of a match that specifies packet attributes
(e.g., transport destination port 22 for SSH tra�c) and
a list of actions that specify how to process matching
packets. In this case, the rule states that all SSH traf-
fic coming from GW should be forwarded to IDS. For
simplicity, we have replaced the names of ports with
the switches they are connected to—e.g., we replace the
name of the port connecting S1 to GW with GW.

Configuration updates. Early versions of OpenFlow did
not support rules that depend upon switch state—e.g.,
rules that test whether a link has failed or not. Hence,
the only way to respond to failures was for the con-
troller to explicitly intercede by installing new rules in
response to the failure. For example, if the switch S1
detected a failure on the link to IDS, it would notify the

2

• Connectivity from GW to A

• SSH traffic traverses IDS

• SSH is 1-link fault tolerant

Traffic
5

Friday, August 16, 13

GW

S1

S2

IDS A

Figure 1: Example network.

• We present the design of a new language for writ-
ing fault-tolerant SDN programs that provides paths
as a basic programming construct (§3).

• We describe algorithms for compiling FatTire pro-
grams to OpenFlow switches that take advantage
of in-network fast-failover mechanisms (§4).

• We develop techniques for analyzing OpenFlow switch
configurations to check that they provide the re-
quired degree of fault tolerance (§5).

The next section presents a practical example that mo-
tivates the need for declarative fault-tolerance program-
ming abstractions. The following sections describe our
main contributions in detail. We then describe our pro-
totype implementation of FatTire as an extension of the
NetCore compiler (§6).

2. PROGRAMMING FAULT TOLERANCE
As motivation, consider the enterprise network shown
in fig. 1 and assume we want to construct a configura-
tion with the following properties: (i) SSH tra�c ar-
riving at the gateway switch (GW) should be eventu-
ally delivered to the access switch (A), (ii) all incoming
SSH tra�c should traverse the middlebox (IDS) before
being reaching internal hosts, (iii) the network should
continue to forward SSH tra�c even if a single link fails.

It is easy to build a configuration that has the first
two properties. For instance, we can forward incom-
ing SSH tra�c along the path [GW,S1,IDS,S2,A]. But
to provide the specified fault-tolerance property, each
of the links in this primary path also needs a backup.
There are numerous possible backup paths,

• [GW,S2,IDS,S2,A] if (GW, S1) fails,

• [GW,S1,S2,IDS,S2,A] if (S1, IDS) fails,

• [GW,S1,IDS,S1,A] if (IDS, S2) fails, and

• [GW,S1,IDS,S2,S1,A] if (S2, A) fails.

Even worse, if the policy required protection against two
link failures then we would also need backup links for
these backup paths; three failures would require back-
ups for our backups for our backups, and so on.

GW Ruletable and Grouptable

Match Instructions

tpDst = 22 Group 1

Group Type Actions

1 FF hFwd S1i, hFwd S2i

S1 Ruletable and Grouptable

Match Instructions

inPort = GW, tpDst = 22 Group 1

inPort = IDS, tpDst = 22 Group 2

inPort = S2, tpDst = 22 Group 2

Group Type Actions

1 FF hFwd IDSi, hFwd S2i
2 FF hFwd Ai

S2 Ruletable and Grouptable

Match Instructions

inPort = IDS, tpDst = 22 Group 1

inPort = S1, tpDst = 22 Group 2

inPort = GW, tpDst = 22 Group 2

Group Type Actions

1 FF hFwd Ai, hFwd S1i
2 FF hFwd IDSi

Figure 2: Example ruletables and grouptables.

Even this simple example requires a non-trivial pro-
gram. For example, tra�c can reach S1 and S2 under
at least four di↵erent scenarios. To ensure that tra�c is
handled correctly in every possible case, it is necessary
to take into account all possible interactions between
primary and backup paths—a tedious and error-prone
task for the network programmer.

OpenFlow. To illustrate the complexity of constructing
fault-tolerant configurations manually, let us see how we
would do this in OpenFlow. The following rule imple-
ments the primary path for SSH tra�c on switch S1:

Match Actions

inPort = GW, tpDst = 22 hFwd IDSi

It consists of a match that specifies packet attributes
(e.g., transport destination port 22 for SSH tra�c) and
a list of actions that specify how to process matching
packets. In this case, the rule states that all SSH traf-
fic coming from GW should be forwarded to IDS. For
simplicity, we have replaced the names of ports with
the switches they are connected to—e.g., we replace the
name of the port connecting S1 to GW with GW.

Configuration updates. Early versions of OpenFlow did
not support rules that depend upon switch state—e.g.,
rules that test whether a link has failed or not. Hence,
the only way to respond to failures was for the con-
troller to explicitly intercede by installing new rules in
response to the failure. For example, if the switch S1
detected a failure on the link to IDS, it would notify the

2

• Connectivity from GW to A

• SSH traffic traverses IDS

• SSH is 1-link fault tolerant

Traffic
5

Friday, August 16, 13

GW

S1

S2

IDS A

Figure 1: Example network.

• We present the design of a new language for writ-
ing fault-tolerant SDN programs that provides paths
as a basic programming construct (§3).

• We describe algorithms for compiling FatTire pro-
grams to OpenFlow switches that take advantage
of in-network fast-failover mechanisms (§4).

• We develop techniques for analyzing OpenFlow switch
configurations to check that they provide the re-
quired degree of fault tolerance (§5).

The next section presents a practical example that mo-
tivates the need for declarative fault-tolerance program-
ming abstractions. The following sections describe our
main contributions in detail. We then describe our pro-
totype implementation of FatTire as an extension of the
NetCore compiler (§6).

2. PROGRAMMING FAULT TOLERANCE
As motivation, consider the enterprise network shown
in fig. 1 and assume we want to construct a configura-
tion with the following properties: (i) SSH tra�c ar-
riving at the gateway switch (GW) should be eventu-
ally delivered to the access switch (A), (ii) all incoming
SSH tra�c should traverse the middlebox (IDS) before
being reaching internal hosts, (iii) the network should
continue to forward SSH tra�c even if a single link fails.

It is easy to build a configuration that has the first
two properties. For instance, we can forward incom-
ing SSH tra�c along the path [GW,S1,IDS,S2,A]. But
to provide the specified fault-tolerance property, each
of the links in this primary path also needs a backup.
There are numerous possible backup paths,

• [GW,S2,IDS,S2,A] if (GW, S1) fails,

• [GW,S1,S2,IDS,S2,A] if (S1, IDS) fails,

• [GW,S1,IDS,S1,A] if (IDS, S2) fails, and

• [GW,S1,IDS,S2,S1,A] if (S2, A) fails.

Even worse, if the policy required protection against two
link failures then we would also need backup links for
these backup paths; three failures would require back-
ups for our backups for our backups, and so on.

GW Ruletable and Grouptable

Match Instructions

tpDst = 22 Group 1

Group Type Actions

1 FF hFwd S1i, hFwd S2i

S1 Ruletable and Grouptable

Match Instructions

inPort = GW, tpDst = 22 Group 1

inPort = IDS, tpDst = 22 Group 2

inPort = S2, tpDst = 22 Group 2

Group Type Actions

1 FF hFwd IDSi, hFwd S2i
2 FF hFwd Ai

S2 Ruletable and Grouptable

Match Instructions

inPort = IDS, tpDst = 22 Group 1

inPort = S1, tpDst = 22 Group 2

inPort = GW, tpDst = 22 Group 2

Group Type Actions

1 FF hFwd Ai, hFwd S1i
2 FF hFwd IDSi

Figure 2: Example ruletables and grouptables.

Even this simple example requires a non-trivial pro-
gram. For example, tra�c can reach S1 and S2 under
at least four di↵erent scenarios. To ensure that tra�c is
handled correctly in every possible case, it is necessary
to take into account all possible interactions between
primary and backup paths—a tedious and error-prone
task for the network programmer.

OpenFlow. To illustrate the complexity of constructing
fault-tolerant configurations manually, let us see how we
would do this in OpenFlow. The following rule imple-
ments the primary path for SSH tra�c on switch S1:

Match Actions

inPort = GW, tpDst = 22 hFwd IDSi

It consists of a match that specifies packet attributes
(e.g., transport destination port 22 for SSH tra�c) and
a list of actions that specify how to process matching
packets. In this case, the rule states that all SSH traf-
fic coming from GW should be forwarded to IDS. For
simplicity, we have replaced the names of ports with
the switches they are connected to—e.g., we replace the
name of the port connecting S1 to GW with GW.

Configuration updates. Early versions of OpenFlow did
not support rules that depend upon switch state—e.g.,
rules that test whether a link has failed or not. Hence,
the only way to respond to failures was for the con-
troller to explicitly intercede by installing new rules in
response to the failure. For example, if the switch S1
detected a failure on the link to IDS, it would notify the

2

• Connectivity from GW to A

• SSH traffic traverses IDS

• SSH is 1-link fault tolerant

Traffic
5

Friday, August 16, 13

GW

S1

S2

IDS A

Figure 1: Example network.

• We present the design of a new language for writ-
ing fault-tolerant SDN programs that provides paths
as a basic programming construct (§3).

• We describe algorithms for compiling FatTire pro-
grams to OpenFlow switches that take advantage
of in-network fast-failover mechanisms (§4).

• We develop techniques for analyzing OpenFlow switch
configurations to check that they provide the re-
quired degree of fault tolerance (§5).

The next section presents a practical example that mo-
tivates the need for declarative fault-tolerance program-
ming abstractions. The following sections describe our
main contributions in detail. We then describe our pro-
totype implementation of FatTire as an extension of the
NetCore compiler (§6).

2. PROGRAMMING FAULT TOLERANCE
As motivation, consider the enterprise network shown
in fig. 1 and assume we want to construct a configura-
tion with the following properties: (i) SSH tra�c ar-
riving at the gateway switch (GW) should be eventu-
ally delivered to the access switch (A), (ii) all incoming
SSH tra�c should traverse the middlebox (IDS) before
being reaching internal hosts, (iii) the network should
continue to forward SSH tra�c even if a single link fails.

It is easy to build a configuration that has the first
two properties. For instance, we can forward incom-
ing SSH tra�c along the path [GW,S1,IDS,S2,A]. But
to provide the specified fault-tolerance property, each
of the links in this primary path also needs a backup.
There are numerous possible backup paths,

• [GW,S2,IDS,S2,A] if (GW, S1) fails,

• [GW,S1,S2,IDS,S2,A] if (S1, IDS) fails,

• [GW,S1,IDS,S1,A] if (IDS, S2) fails, and

• [GW,S1,IDS,S2,S1,A] if (S2, A) fails.

Even worse, if the policy required protection against two
link failures then we would also need backup links for
these backup paths; three failures would require back-
ups for our backups for our backups, and so on.

GW Ruletable and Grouptable

Match Instructions

tpDst = 22 Group 1

Group Type Actions

1 FF hFwd S1i, hFwd S2i

S1 Ruletable and Grouptable

Match Instructions

inPort = GW, tpDst = 22 Group 1

inPort = IDS, tpDst = 22 Group 2

inPort = S2, tpDst = 22 Group 2

Group Type Actions

1 FF hFwd IDSi, hFwd S2i
2 FF hFwd Ai

S2 Ruletable and Grouptable

Match Instructions

inPort = IDS, tpDst = 22 Group 1

inPort = S1, tpDst = 22 Group 2

inPort = GW, tpDst = 22 Group 2

Group Type Actions

1 FF hFwd Ai, hFwd S1i
2 FF hFwd IDSi

Figure 2: Example ruletables and grouptables.

Even this simple example requires a non-trivial pro-
gram. For example, tra�c can reach S1 and S2 under
at least four di↵erent scenarios. To ensure that tra�c is
handled correctly in every possible case, it is necessary
to take into account all possible interactions between
primary and backup paths—a tedious and error-prone
task for the network programmer.

OpenFlow. To illustrate the complexity of constructing
fault-tolerant configurations manually, let us see how we
would do this in OpenFlow. The following rule imple-
ments the primary path for SSH tra�c on switch S1:

Match Actions

inPort = GW, tpDst = 22 hFwd IDSi

It consists of a match that specifies packet attributes
(e.g., transport destination port 22 for SSH tra�c) and
a list of actions that specify how to process matching
packets. In this case, the rule states that all SSH traf-
fic coming from GW should be forwarded to IDS. For
simplicity, we have replaced the names of ports with
the switches they are connected to—e.g., we replace the
name of the port connecting S1 to GW with GW.

Configuration updates. Early versions of OpenFlow did
not support rules that depend upon switch state—e.g.,
rules that test whether a link has failed or not. Hence,
the only way to respond to failures was for the con-
troller to explicitly intercede by installing new rules in
response to the failure. For example, if the switch S1
detected a failure on the link to IDS, it would notify the

2

• Connectivity from GW to A

• SSH traffic traverses IDS

• SSH is 1-link fault tolerant

Traffic
5

Friday, August 16, 13

GW

S1

S2

IDS A

Figure 1: Example network.

• We present the design of a new language for writ-
ing fault-tolerant SDN programs that provides paths
as a basic programming construct (§3).

• We describe algorithms for compiling FatTire pro-
grams to OpenFlow switches that take advantage
of in-network fast-failover mechanisms (§4).

• We develop techniques for analyzing OpenFlow switch
configurations to check that they provide the re-
quired degree of fault tolerance (§5).

The next section presents a practical example that mo-
tivates the need for declarative fault-tolerance program-
ming abstractions. The following sections describe our
main contributions in detail. We then describe our pro-
totype implementation of FatTire as an extension of the
NetCore compiler (§6).

2. PROGRAMMING FAULT TOLERANCE
As motivation, consider the enterprise network shown
in fig. 1 and assume we want to construct a configura-
tion with the following properties: (i) SSH tra�c ar-
riving at the gateway switch (GW) should be eventu-
ally delivered to the access switch (A), (ii) all incoming
SSH tra�c should traverse the middlebox (IDS) before
being reaching internal hosts, (iii) the network should
continue to forward SSH tra�c even if a single link fails.

It is easy to build a configuration that has the first
two properties. For instance, we can forward incom-
ing SSH tra�c along the path [GW,S1,IDS,S2,A]. But
to provide the specified fault-tolerance property, each
of the links in this primary path also needs a backup.
There are numerous possible backup paths,

• [GW,S2,IDS,S2,A] if (GW, S1) fails,

• [GW,S1,S2,IDS,S2,A] if (S1, IDS) fails,

• [GW,S1,IDS,S1,A] if (IDS, S2) fails, and

• [GW,S1,IDS,S2,S1,A] if (S2, A) fails.

Even worse, if the policy required protection against two
link failures then we would also need backup links for
these backup paths; three failures would require back-
ups for our backups for our backups, and so on.

GW Ruletable and Grouptable

Match Instructions

tpDst = 22 Group 1

Group Type Actions

1 FF hFwd S1i, hFwd S2i

S1 Ruletable and Grouptable

Match Instructions

inPort = GW, tpDst = 22 Group 1

inPort = IDS, tpDst = 22 Group 2

inPort = S2, tpDst = 22 Group 2

Group Type Actions

1 FF hFwd IDSi, hFwd S2i
2 FF hFwd Ai

S2 Ruletable and Grouptable

Match Instructions

inPort = IDS, tpDst = 22 Group 1

inPort = S1, tpDst = 22 Group 2

inPort = GW, tpDst = 22 Group 2

Group Type Actions

1 FF hFwd Ai, hFwd S1i
2 FF hFwd IDSi

Figure 2: Example ruletables and grouptables.

Even this simple example requires a non-trivial pro-
gram. For example, tra�c can reach S1 and S2 under
at least four di↵erent scenarios. To ensure that tra�c is
handled correctly in every possible case, it is necessary
to take into account all possible interactions between
primary and backup paths—a tedious and error-prone
task for the network programmer.

OpenFlow. To illustrate the complexity of constructing
fault-tolerant configurations manually, let us see how we
would do this in OpenFlow. The following rule imple-
ments the primary path for SSH tra�c on switch S1:

Match Actions

inPort = GW, tpDst = 22 hFwd IDSi

It consists of a match that specifies packet attributes
(e.g., transport destination port 22 for SSH tra�c) and
a list of actions that specify how to process matching
packets. In this case, the rule states that all SSH traf-
fic coming from GW should be forwarded to IDS. For
simplicity, we have replaced the names of ports with
the switches they are connected to—e.g., we replace the
name of the port connecting S1 to GW with GW.

Configuration updates. Early versions of OpenFlow did
not support rules that depend upon switch state—e.g.,
rules that test whether a link has failed or not. Hence,
the only way to respond to failures was for the con-
troller to explicitly intercede by installing new rules in
response to the failure. For example, if the switch S1
detected a failure on the link to IDS, it would notify the

2

• Connectivity from GW to A

• SSH traffic traverses IDS

• SSH is 1-link fault tolerant

Traffic
5

Friday, August 16, 13

GW

S1

S2

IDS A

Figure 1: Example network.

• We present the design of a new language for writ-
ing fault-tolerant SDN programs that provides paths
as a basic programming construct (§3).

• We describe algorithms for compiling FatTire pro-
grams to OpenFlow switches that take advantage
of in-network fast-failover mechanisms (§4).

• We develop techniques for analyzing OpenFlow switch
configurations to check that they provide the re-
quired degree of fault tolerance (§5).

The next section presents a practical example that mo-
tivates the need for declarative fault-tolerance program-
ming abstractions. The following sections describe our
main contributions in detail. We then describe our pro-
totype implementation of FatTire as an extension of the
NetCore compiler (§6).

2. PROGRAMMING FAULT TOLERANCE
As motivation, consider the enterprise network shown
in fig. 1 and assume we want to construct a configura-
tion with the following properties: (i) SSH tra�c ar-
riving at the gateway switch (GW) should be eventu-
ally delivered to the access switch (A), (ii) all incoming
SSH tra�c should traverse the middlebox (IDS) before
being reaching internal hosts, (iii) the network should
continue to forward SSH tra�c even if a single link fails.

It is easy to build a configuration that has the first
two properties. For instance, we can forward incom-
ing SSH tra�c along the path [GW,S1,IDS,S2,A]. But
to provide the specified fault-tolerance property, each
of the links in this primary path also needs a backup.
There are numerous possible backup paths,

• [GW,S2,IDS,S2,A] if (GW, S1) fails,

• [GW,S1,S2,IDS,S2,A] if (S1, IDS) fails,

• [GW,S1,IDS,S1,A] if (IDS, S2) fails, and

• [GW,S1,IDS,S2,S1,A] if (S2, A) fails.

Even worse, if the policy required protection against two
link failures then we would also need backup links for
these backup paths; three failures would require back-
ups for our backups for our backups, and so on.

GW Ruletable and Grouptable

Match Instructions

tpDst = 22 Group 1

Group Type Actions

1 FF hFwd S1i, hFwd S2i

S1 Ruletable and Grouptable

Match Instructions

inPort = GW, tpDst = 22 Group 1

inPort = IDS, tpDst = 22 Group 2

inPort = S2, tpDst = 22 Group 2

Group Type Actions

1 FF hFwd IDSi, hFwd S2i
2 FF hFwd Ai

S2 Ruletable and Grouptable

Match Instructions

inPort = IDS, tpDst = 22 Group 1

inPort = S1, tpDst = 22 Group 2

inPort = GW, tpDst = 22 Group 2

Group Type Actions

1 FF hFwd Ai, hFwd S1i
2 FF hFwd IDSi

Figure 2: Example ruletables and grouptables.

Even this simple example requires a non-trivial pro-
gram. For example, tra�c can reach S1 and S2 under
at least four di↵erent scenarios. To ensure that tra�c is
handled correctly in every possible case, it is necessary
to take into account all possible interactions between
primary and backup paths—a tedious and error-prone
task for the network programmer.

OpenFlow. To illustrate the complexity of constructing
fault-tolerant configurations manually, let us see how we
would do this in OpenFlow. The following rule imple-
ments the primary path for SSH tra�c on switch S1:

Match Actions

inPort = GW, tpDst = 22 hFwd IDSi

It consists of a match that specifies packet attributes
(e.g., transport destination port 22 for SSH tra�c) and
a list of actions that specify how to process matching
packets. In this case, the rule states that all SSH traf-
fic coming from GW should be forwarded to IDS. For
simplicity, we have replaced the names of ports with
the switches they are connected to—e.g., we replace the
name of the port connecting S1 to GW with GW.

Configuration updates. Early versions of OpenFlow did
not support rules that depend upon switch state—e.g.,
rules that test whether a link has failed or not. Hence,
the only way to respond to failures was for the con-
troller to explicitly intercede by installing new rules in
response to the failure. For example, if the switch S1
detected a failure on the link to IDS, it would notify the

2

• Connectivity from GW to A

• SSH traffic traverses IDS

• SSH is 1-link fault tolerant

Traffic
5

Friday, August 16, 13

GW

S1

S2

IDS A

Figure 1: Example network.

• We present the design of a new language for writ-
ing fault-tolerant SDN programs that provides paths
as a basic programming construct (§3).

• We describe algorithms for compiling FatTire pro-
grams to OpenFlow switches that take advantage
of in-network fast-failover mechanisms (§4).

• We develop techniques for analyzing OpenFlow switch
configurations to check that they provide the re-
quired degree of fault tolerance (§5).

The next section presents a practical example that mo-
tivates the need for declarative fault-tolerance program-
ming abstractions. The following sections describe our
main contributions in detail. We then describe our pro-
totype implementation of FatTire as an extension of the
NetCore compiler (§6).

2. PROGRAMMING FAULT TOLERANCE
As motivation, consider the enterprise network shown
in fig. 1 and assume we want to construct a configura-
tion with the following properties: (i) SSH tra�c ar-
riving at the gateway switch (GW) should be eventu-
ally delivered to the access switch (A), (ii) all incoming
SSH tra�c should traverse the middlebox (IDS) before
being reaching internal hosts, (iii) the network should
continue to forward SSH tra�c even if a single link fails.

It is easy to build a configuration that has the first
two properties. For instance, we can forward incom-
ing SSH tra�c along the path [GW,S1,IDS,S2,A]. But
to provide the specified fault-tolerance property, each
of the links in this primary path also needs a backup.
There are numerous possible backup paths,

• [GW,S2,IDS,S2,A] if (GW, S1) fails,

• [GW,S1,S2,IDS,S2,A] if (S1, IDS) fails,

• [GW,S1,IDS,S1,A] if (IDS, S2) fails, and

• [GW,S1,IDS,S2,S1,A] if (S2, A) fails.

Even worse, if the policy required protection against two
link failures then we would also need backup links for
these backup paths; three failures would require back-
ups for our backups for our backups, and so on.

GW Ruletable and Grouptable

Match Instructions

tpDst = 22 Group 1

Group Type Actions

1 FF hFwd S1i, hFwd S2i

S1 Ruletable and Grouptable

Match Instructions

inPort = GW, tpDst = 22 Group 1

inPort = IDS, tpDst = 22 Group 2

inPort = S2, tpDst = 22 Group 2

Group Type Actions

1 FF hFwd IDSi, hFwd S2i
2 FF hFwd Ai

S2 Ruletable and Grouptable

Match Instructions

inPort = IDS, tpDst = 22 Group 1

inPort = S1, tpDst = 22 Group 2

inPort = GW, tpDst = 22 Group 2

Group Type Actions

1 FF hFwd Ai, hFwd S1i
2 FF hFwd IDSi

Figure 2: Example ruletables and grouptables.

Even this simple example requires a non-trivial pro-
gram. For example, tra�c can reach S1 and S2 under
at least four di↵erent scenarios. To ensure that tra�c is
handled correctly in every possible case, it is necessary
to take into account all possible interactions between
primary and backup paths—a tedious and error-prone
task for the network programmer.

OpenFlow. To illustrate the complexity of constructing
fault-tolerant configurations manually, let us see how we
would do this in OpenFlow. The following rule imple-
ments the primary path for SSH tra�c on switch S1:

Match Actions

inPort = GW, tpDst = 22 hFwd IDSi

It consists of a match that specifies packet attributes
(e.g., transport destination port 22 for SSH tra�c) and
a list of actions that specify how to process matching
packets. In this case, the rule states that all SSH traf-
fic coming from GW should be forwarded to IDS. For
simplicity, we have replaced the names of ports with
the switches they are connected to—e.g., we replace the
name of the port connecting S1 to GW with GW.

Configuration updates. Early versions of OpenFlow did
not support rules that depend upon switch state—e.g.,
rules that test whether a link has failed or not. Hence,
the only way to respond to failures was for the con-
troller to explicitly intercede by installing new rules in
response to the failure. For example, if the switch S1
detected a failure on the link to IDS, it would notify the

2

• Connectivity from GW to A

• SSH traffic traverses IDS

• SSH is 1-link fault tolerant

Traffic
5

Friday, August 16, 13

GW

S1

S2

IDS A

Figure 1: Example network.

• We present the design of a new language for writ-
ing fault-tolerant SDN programs that provides paths
as a basic programming construct (§3).

• We describe algorithms for compiling FatTire pro-
grams to OpenFlow switches that take advantage
of in-network fast-failover mechanisms (§4).

• We develop techniques for analyzing OpenFlow switch
configurations to check that they provide the re-
quired degree of fault tolerance (§5).

The next section presents a practical example that mo-
tivates the need for declarative fault-tolerance program-
ming abstractions. The following sections describe our
main contributions in detail. We then describe our pro-
totype implementation of FatTire as an extension of the
NetCore compiler (§6).

2. PROGRAMMING FAULT TOLERANCE
As motivation, consider the enterprise network shown
in fig. 1 and assume we want to construct a configura-
tion with the following properties: (i) SSH tra�c ar-
riving at the gateway switch (GW) should be eventu-
ally delivered to the access switch (A), (ii) all incoming
SSH tra�c should traverse the middlebox (IDS) before
being reaching internal hosts, (iii) the network should
continue to forward SSH tra�c even if a single link fails.

It is easy to build a configuration that has the first
two properties. For instance, we can forward incom-
ing SSH tra�c along the path [GW,S1,IDS,S2,A]. But
to provide the specified fault-tolerance property, each
of the links in this primary path also needs a backup.
There are numerous possible backup paths,

• [GW,S2,IDS,S2,A] if (GW, S1) fails,

• [GW,S1,S2,IDS,S2,A] if (S1, IDS) fails,

• [GW,S1,IDS,S1,A] if (IDS, S2) fails, and

• [GW,S1,IDS,S2,S1,A] if (S2, A) fails.

Even worse, if the policy required protection against two
link failures then we would also need backup links for
these backup paths; three failures would require back-
ups for our backups for our backups, and so on.

GW Ruletable and Grouptable

Match Instructions

tpDst = 22 Group 1

Group Type Actions

1 FF hFwd S1i, hFwd S2i

S1 Ruletable and Grouptable

Match Instructions

inPort = GW, tpDst = 22 Group 1

inPort = IDS, tpDst = 22 Group 2

inPort = S2, tpDst = 22 Group 2

Group Type Actions

1 FF hFwd IDSi, hFwd S2i
2 FF hFwd Ai

S2 Ruletable and Grouptable

Match Instructions

inPort = IDS, tpDst = 22 Group 1

inPort = S1, tpDst = 22 Group 2

inPort = GW, tpDst = 22 Group 2

Group Type Actions

1 FF hFwd Ai, hFwd S1i
2 FF hFwd IDSi

Figure 2: Example ruletables and grouptables.

Even this simple example requires a non-trivial pro-
gram. For example, tra�c can reach S1 and S2 under
at least four di↵erent scenarios. To ensure that tra�c is
handled correctly in every possible case, it is necessary
to take into account all possible interactions between
primary and backup paths—a tedious and error-prone
task for the network programmer.

OpenFlow. To illustrate the complexity of constructing
fault-tolerant configurations manually, let us see how we
would do this in OpenFlow. The following rule imple-
ments the primary path for SSH tra�c on switch S1:

Match Actions

inPort = GW, tpDst = 22 hFwd IDSi

It consists of a match that specifies packet attributes
(e.g., transport destination port 22 for SSH tra�c) and
a list of actions that specify how to process matching
packets. In this case, the rule states that all SSH traf-
fic coming from GW should be forwarded to IDS. For
simplicity, we have replaced the names of ports with
the switches they are connected to—e.g., we replace the
name of the port connecting S1 to GW with GW.

Configuration updates. Early versions of OpenFlow did
not support rules that depend upon switch state—e.g.,
rules that test whether a link has failed or not. Hence,
the only way to respond to failures was for the con-
troller to explicitly intercede by installing new rules in
response to the failure. For example, if the switch S1
detected a failure on the link to IDS, it would notify the

2

• Connectivity from GW to A

• SSH traffic traverses IDS

• SSH is 1-link fault tolerant

Traffic
5

Friday, August 16, 13

GW

S1

S2

IDS A

Figure 1: Example network.

• We present the design of a new language for writ-
ing fault-tolerant SDN programs that provides paths
as a basic programming construct (§3).

• We describe algorithms for compiling FatTire pro-
grams to OpenFlow switches that take advantage
of in-network fast-failover mechanisms (§4).

• We develop techniques for analyzing OpenFlow switch
configurations to check that they provide the re-
quired degree of fault tolerance (§5).

The next section presents a practical example that mo-
tivates the need for declarative fault-tolerance program-
ming abstractions. The following sections describe our
main contributions in detail. We then describe our pro-
totype implementation of FatTire as an extension of the
NetCore compiler (§6).

2. PROGRAMMING FAULT TOLERANCE
As motivation, consider the enterprise network shown
in fig. 1 and assume we want to construct a configura-
tion with the following properties: (i) SSH tra�c ar-
riving at the gateway switch (GW) should be eventu-
ally delivered to the access switch (A), (ii) all incoming
SSH tra�c should traverse the middlebox (IDS) before
being reaching internal hosts, (iii) the network should
continue to forward SSH tra�c even if a single link fails.

It is easy to build a configuration that has the first
two properties. For instance, we can forward incom-
ing SSH tra�c along the path [GW,S1,IDS,S2,A]. But
to provide the specified fault-tolerance property, each
of the links in this primary path also needs a backup.
There are numerous possible backup paths,

• [GW,S2,IDS,S2,A] if (GW, S1) fails,

• [GW,S1,S2,IDS,S2,A] if (S1, IDS) fails,

• [GW,S1,IDS,S1,A] if (IDS, S2) fails, and

• [GW,S1,IDS,S2,S1,A] if (S2, A) fails.

Even worse, if the policy required protection against two
link failures then we would also need backup links for
these backup paths; three failures would require back-
ups for our backups for our backups, and so on.

GW Ruletable and Grouptable

Match Instructions

tpDst = 22 Group 1

Group Type Actions

1 FF hFwd S1i, hFwd S2i

S1 Ruletable and Grouptable

Match Instructions

inPort = GW, tpDst = 22 Group 1

inPort = IDS, tpDst = 22 Group 2

inPort = S2, tpDst = 22 Group 2

Group Type Actions

1 FF hFwd IDSi, hFwd S2i
2 FF hFwd Ai

S2 Ruletable and Grouptable

Match Instructions

inPort = IDS, tpDst = 22 Group 1

inPort = S1, tpDst = 22 Group 2

inPort = GW, tpDst = 22 Group 2

Group Type Actions

1 FF hFwd Ai, hFwd S1i
2 FF hFwd IDSi

Figure 2: Example ruletables and grouptables.

Even this simple example requires a non-trivial pro-
gram. For example, tra�c can reach S1 and S2 under
at least four di↵erent scenarios. To ensure that tra�c is
handled correctly in every possible case, it is necessary
to take into account all possible interactions between
primary and backup paths—a tedious and error-prone
task for the network programmer.

OpenFlow. To illustrate the complexity of constructing
fault-tolerant configurations manually, let us see how we
would do this in OpenFlow. The following rule imple-
ments the primary path for SSH tra�c on switch S1:

Match Actions

inPort = GW, tpDst = 22 hFwd IDSi

It consists of a match that specifies packet attributes
(e.g., transport destination port 22 for SSH tra�c) and
a list of actions that specify how to process matching
packets. In this case, the rule states that all SSH traf-
fic coming from GW should be forwarded to IDS. For
simplicity, we have replaced the names of ports with
the switches they are connected to—e.g., we replace the
name of the port connecting S1 to GW with GW.

Configuration updates. Early versions of OpenFlow did
not support rules that depend upon switch state—e.g.,
rules that test whether a link has failed or not. Hence,
the only way to respond to failures was for the con-
troller to explicitly intercede by installing new rules in
response to the failure. For example, if the switch S1
detected a failure on the link to IDS, it would notify the

2

• Connectivity from GW to A

• SSH traffic traverses IDS

• SSH is 1-link fault tolerant

Traffic
5

Friday, August 16, 13

6

GW

S1

S2

IDS A

Figure 1: Example network.

paths. The FatTire compiler takes programs specified in
terms of paths and translates them to OpenFlow switch con-
figurations that automatically respond to link failures with-
out controller intervention. Compiling FatTire turns out to
be significantly more challenging compard to other SDN lan-
guages like NetCore [3, 10] for several reasons: (i) FatTire
programs are non-deterministic due to the use of regular
expressions; (ii) translating paths to individual switch con-
figurations requires a global analysis, and (iii) there can be
tricky interactions between paths when failures occur. We
have carefully engineered the FatTire compiler to correctly
handle each of these issues.

Overall, the contributions of this paper are as follows:

• We present the design of a new language for writing
fault-tolerant SDN programs that provides paths as a
basic programming construct (§3).

• We describe algorithms for compiling FatTire programs
to OpenFlow switches that take advantage of in-network
fast-failover mechanisms (§4).

[Should we claim the implementation as a contribution
now that it’s complete? –MJR] [Yes, in my opinion.
–JNF]

The next section presents a practical example that moti-
vates the need for declarative fault-tolerance programming
abstractions. The following sections describe our main con-
tributions in detail. We then describe our prototype imple-
mentation of FatTire as an extension of the NetCore com-
piler (§5).[This last sentence could be cut if the implemen-
tation is a contribution. –JNF]

2. PROGRAMMING FAULT TOLERANCE
As motivation, consider the enterprise network shown in
fig. 1 and assume we want to construct a configuration with
the following properties: (i) SSH tra�c arriving at the gate-
way switch (GW) should be eventually delivered to the access
switch (A), (ii) all incoming SSH tra�c should traverse the
middlebox (IDS) before being reaching internal hosts, (iii)
the network should continue forwarding SSH tra�c even if
a single link fails.

It is easy to build a configuration with the first two prop-
erties. For instance, we can forward incoming SSH tra�c
along the path [GW,S1,IDS,S2,A]. But to provide the spec-
ified fault-tolerance property, each of the links in this pri-
mary path also needs a backup. There are numerous possible
backup paths,

• [GW,S2,IDS,S2,A] if (GW, S1) fails,

• [GW,S1,S2,IDS,S2,A] if (S1, IDS) fails,

GW Ruletable and Grouptable

Match Instructions

tpDst = 22 Group 1

Group Type Actions

1 FF hFwd S1i, hFwd S2i
S1 Ruletable and Grouptable

Match Instructions

inPort = GW, tpDst = 22 Group 1

inPort = IDS, tpDst = 22 Group 2

inPort = S2, tpDst = 22 Group 2

Group Type Actions

1 FF hFwd IDSi, hFwd S2i
2 FF hFwd Ai

S2 Ruletable and Grouptable

Match Instructions

inPort = IDS, tpDst = 22 Group 1

inPort = S1, tpDst = 22 Group 2

inPort = GW, tpDst = 22 Group 2

Group Type Actions

1 FF hFwd Ai, hFwd S1i
2 FF hFwd IDSi

Figure 2: Example ruletables and grouptables.

• [GW,S1,IDS,S1,A] if (IDS, S2) fails, and

• [GW,S1,IDS,S2,S1,A] if (S2, A) fails.

Even worse, if the policy required protection against two
link failures then we would also need backup links for the
backup paths; three failures would require backups for the
backups of the backups, and so on.
Even this simple example requires a non-trivial program.

For example, tra�c can reach S1 and S2 under at least four
di↵erent scenarios. To ensure that tra�c is handled cor-
rectly in all possible cases, it is necessary to take into account
every possible interaction between primary and backup paths—
a tedious and error-prone task for the programmer.

OpenFlow. To illustrate the complexity of constructing fault-
tolerant configurations manually, let us see how we would do
this in OpenFlow. The following rule implements the pri-
mary path for SSH tra�c on switch S1:

Match Actions

inPort = GW, tpDst = 22 hFwd IDSi

It consists of a match that specifies packet attributes (e.g.,
transport destination port 22 for SSH tra�c) and a list of
actions that specify how to process matching packets. In
this case, the rule states that all SSH tra�c coming from GW
should be forwarded to IDS. For simplicity, we have replaced
the names of ports with the switches they are connected to—
e.g., in place of the name of the port connecting S1 to GW,
we simply write GW.

Configuration updates. Early versions of OpenFlow did
not support rules that depend upon switch state—e.g., rules
that test whether a link has failed or not. Hence, the only
way to respond to failures was for the controller to explicitly
intercede by installing new rules in response to the failure.

GW

S1

S2

IDS A

Figure 1: Example network.

paths. The FatTire compiler takes programs specified in
terms of paths and translates them to OpenFlow switch con-
figurations that automatically respond to link failures with-
out controller intervention. Compiling FatTire turns out to
be significantly more challenging compard to other SDN lan-
guages like NetCore [3, 10] for several reasons: (i) FatTire
programs are non-deterministic due to the use of regular
expressions; (ii) translating paths to individual switch con-
figurations requires a global analysis, and (iii) there can be
tricky interactions between paths when failures occur. We
have carefully engineered the FatTire compiler to correctly
handle each of these issues.

Overall, the contributions of this paper are as follows:

• We present the design of a new language for writing
fault-tolerant SDN programs that provides paths as a
basic programming construct (§3).

• We describe algorithms for compiling FatTire programs
to OpenFlow switches that take advantage of in-network
fast-failover mechanisms (§4).

[Should we claim the implementation as a contribution
now that it’s complete? –MJR] [Yes, in my opinion.
–JNF]

The next section presents a practical example that moti-
vates the need for declarative fault-tolerance programming
abstractions. The following sections describe our main con-
tributions in detail. We then describe our prototype imple-
mentation of FatTire as an extension of the NetCore com-
piler (§5).[This last sentence could be cut if the implemen-
tation is a contribution. –JNF]

2. PROGRAMMING FAULT TOLERANCE
As motivation, consider the enterprise network shown in
fig. 1 and assume we want to construct a configuration with
the following properties: (i) SSH tra�c arriving at the gate-
way switch (GW) should be eventually delivered to the access
switch (A), (ii) all incoming SSH tra�c should traverse the
middlebox (IDS) before being reaching internal hosts, (iii)
the network should continue forwarding SSH tra�c even if
a single link fails.

It is easy to build a configuration with the first two prop-
erties. For instance, we can forward incoming SSH tra�c
along the path [GW,S1,IDS,S2,A]. But to provide the spec-
ified fault-tolerance property, each of the links in this pri-
mary path also needs a backup. There are numerous possible
backup paths,

• [GW,S2,IDS,S2,A] if (GW, S1) fails,

• [GW,S1,S2,IDS,S2,A] if (S1, IDS) fails,

GW Ruletable and Grouptable

Match Instructions

tpDst = 22 Group 1

Group Type Actions

1 FF hFwd S1i, hFwd S2i
S1 Ruletable and Grouptable

Match Instructions

inPort = GW, tpDst = 22 Group 1

inPort = IDS, tpDst = 22 Group 2

inPort = S2, tpDst = 22 Group 2

Group Type Actions

1 FF hFwd IDSi, hFwd S2i
2 FF hFwd Ai

S2 Ruletable and Grouptable

Match Instructions

inPort = IDS, tpDst = 22 Group 1

inPort = S1, tpDst = 22 Group 2

inPort = GW, tpDst = 22 Group 2

Group Type Actions

1 FF hFwd Ai, hFwd S1i
2 FF hFwd IDSi

Figure 2: Example ruletables and grouptables.

• [GW,S1,IDS,S1,A] if (IDS, S2) fails, and

• [GW,S1,IDS,S2,S1,A] if (S2, A) fails.

Even worse, if the policy required protection against two
link failures then we would also need backup links for the
backup paths; three failures would require backups for the
backups of the backups, and so on.
Even this simple example requires a non-trivial program.

For example, tra�c can reach S1 and S2 under at least four
di↵erent scenarios. To ensure that tra�c is handled cor-
rectly in all possible cases, it is necessary to take into account
every possible interaction between primary and backup paths—
a tedious and error-prone task for the programmer.

OpenFlow. To illustrate the complexity of constructing fault-
tolerant configurations manually, let us see how we would do
this in OpenFlow. The following rule implements the pri-
mary path for SSH tra�c on switch S1:

Match Actions

inPort = GW, tpDst = 22 hFwd IDSi

It consists of a match that specifies packet attributes (e.g.,
transport destination port 22 for SSH tra�c) and a list of
actions that specify how to process matching packets. In
this case, the rule states that all SSH tra�c coming from GW
should be forwarded to IDS. For simplicity, we have replaced
the names of ports with the switches they are connected to—
e.g., in place of the name of the port connecting S1 to GW,
we simply write GW.

Configuration updates. Early versions of OpenFlow did
not support rules that depend upon switch state—e.g., rules
that test whether a link has failed or not. Hence, the only
way to respond to failures was for the controller to explicitly
intercede by installing new rules in response to the failure.

GW

S1

S2

IDS A

Figure 1: Example network.

paths. The FatTire compiler takes programs specified in
terms of paths and translates them to OpenFlow switch con-
figurations that automatically respond to link failures with-
out controller intervention. Compiling FatTire turns out to
be significantly more challenging compard to other SDN lan-
guages like NetCore [3, 10] for several reasons: (i) FatTire
programs are non-deterministic due to the use of regular
expressions; (ii) translating paths to individual switch con-
figurations requires a global analysis, and (iii) there can be
tricky interactions between paths when failures occur. We
have carefully engineered the FatTire compiler to correctly
handle each of these issues.

Overall, the contributions of this paper are as follows:

• We present the design of a new language for writing
fault-tolerant SDN programs that provides paths as a
basic programming construct (§3).

• We describe algorithms for compiling FatTire programs
to OpenFlow switches that take advantage of in-network
fast-failover mechanisms (§4).

[Should we claim the implementation as a contribution
now that it’s complete? –MJR] [Yes, in my opinion.
–JNF]

The next section presents a practical example that moti-
vates the need for declarative fault-tolerance programming
abstractions. The following sections describe our main con-
tributions in detail. We then describe our prototype imple-
mentation of FatTire as an extension of the NetCore com-
piler (§5).[This last sentence could be cut if the implemen-
tation is a contribution. –JNF]

2. PROGRAMMING FAULT TOLERANCE
As motivation, consider the enterprise network shown in
fig. 1 and assume we want to construct a configuration with
the following properties: (i) SSH tra�c arriving at the gate-
way switch (GW) should be eventually delivered to the access
switch (A), (ii) all incoming SSH tra�c should traverse the
middlebox (IDS) before being reaching internal hosts, (iii)
the network should continue forwarding SSH tra�c even if
a single link fails.

It is easy to build a configuration with the first two prop-
erties. For instance, we can forward incoming SSH tra�c
along the path [GW,S1,IDS,S2,A]. But to provide the spec-
ified fault-tolerance property, each of the links in this pri-
mary path also needs a backup. There are numerous possible
backup paths,

• [GW,S2,IDS,S2,A] if (GW, S1) fails,

• [GW,S1,S2,IDS,S2,A] if (S1, IDS) fails,

GW Ruletable and Grouptable

Match Instructions

tpDst = 22 Group 1

Group Type Actions

1 FF hFwd S1i, hFwd S2i
S1 Ruletable and Grouptable

Match Instructions

inPort = GW, tpDst = 22 Group 1

inPort = IDS, tpDst = 22 Group 2

inPort = S2, tpDst = 22 Group 2

Group Type Actions

1 FF hFwd IDSi, hFwd S2i
2 FF hFwd Ai

S2 Ruletable and Grouptable

Match Instructions

inPort = IDS, tpDst = 22 Group 1

inPort = S1, tpDst = 22 Group 2

inPort = GW, tpDst = 22 Group 2

Group Type Actions

1 FF hFwd Ai, hFwd S1i
2 FF hFwd IDSi

Figure 2: Example ruletables and grouptables.

• [GW,S1,IDS,S1,A] if (IDS, S2) fails, and

• [GW,S1,IDS,S2,S1,A] if (S2, A) fails.

Even worse, if the policy required protection against two
link failures then we would also need backup links for the
backup paths; three failures would require backups for the
backups of the backups, and so on.
Even this simple example requires a non-trivial program.

For example, tra�c can reach S1 and S2 under at least four
di↵erent scenarios. To ensure that tra�c is handled cor-
rectly in all possible cases, it is necessary to take into account
every possible interaction between primary and backup paths—
a tedious and error-prone task for the programmer.

OpenFlow. To illustrate the complexity of constructing fault-
tolerant configurations manually, let us see how we would do
this in OpenFlow. The following rule implements the pri-
mary path for SSH tra�c on switch S1:

Match Actions

inPort = GW, tpDst = 22 hFwd IDSi

It consists of a match that specifies packet attributes (e.g.,
transport destination port 22 for SSH tra�c) and a list of
actions that specify how to process matching packets. In
this case, the rule states that all SSH tra�c coming from GW
should be forwarded to IDS. For simplicity, we have replaced
the names of ports with the switches they are connected to—
e.g., in place of the name of the port connecting S1 to GW,
we simply write GW.

Configuration updates. Early versions of OpenFlow did
not support rules that depend upon switch state—e.g., rules
that test whether a link has failed or not. Hence, the only
way to respond to failures was for the controller to explicitly
intercede by installing new rules in response to the failure.

GW

S1

S2

IDS A

Figure 1: Example network.

paths. The FatTire compiler takes programs specified in
terms of paths and translates them to OpenFlow switch con-
figurations that automatically respond to link failures with-
out controller intervention. Compiling FatTire turns out to
be significantly more challenging compard to other SDN lan-
guages like NetCore [3, 10] for several reasons: (i) FatTire
programs are non-deterministic due to the use of regular
expressions; (ii) translating paths to individual switch con-
figurations requires a global analysis, and (iii) there can be
tricky interactions between paths when failures occur. We
have carefully engineered the FatTire compiler to correctly
handle each of these issues.

Overall, the contributions of this paper are as follows:

• We present the design of a new language for writing
fault-tolerant SDN programs that provides paths as a
basic programming construct (§3).

• We describe algorithms for compiling FatTire programs
to OpenFlow switches that take advantage of in-network
fast-failover mechanisms (§4).

[Should we claim the implementation as a contribution
now that it’s complete? –MJR] [Yes, in my opinion.
–JNF]

The next section presents a practical example that moti-
vates the need for declarative fault-tolerance programming
abstractions. The following sections describe our main con-
tributions in detail. We then describe our prototype imple-
mentation of FatTire as an extension of the NetCore com-
piler (§5).[This last sentence could be cut if the implemen-
tation is a contribution. –JNF]

2. PROGRAMMING FAULT TOLERANCE
As motivation, consider the enterprise network shown in
fig. 1 and assume we want to construct a configuration with
the following properties: (i) SSH tra�c arriving at the gate-
way switch (GW) should be eventually delivered to the access
switch (A), (ii) all incoming SSH tra�c should traverse the
middlebox (IDS) before being reaching internal hosts, (iii)
the network should continue forwarding SSH tra�c even if
a single link fails.

It is easy to build a configuration with the first two prop-
erties. For instance, we can forward incoming SSH tra�c
along the path [GW,S1,IDS,S2,A]. But to provide the spec-
ified fault-tolerance property, each of the links in this pri-
mary path also needs a backup. There are numerous possible
backup paths,

• [GW,S2,IDS,S2,A] if (GW, S1) fails,

• [GW,S1,S2,IDS,S2,A] if (S1, IDS) fails,

GW Ruletable and Grouptable

Match Instructions

tpDst = 22 Group 1

Group Type Actions

1 FF hFwd S1i, hFwd S2i
S1 Ruletable and Grouptable

Match Instructions

inPort = GW, tpDst = 22 Group 1

inPort = IDS, tpDst = 22 Group 2

inPort = S2, tpDst = 22 Group 2

Group Type Actions

1 FF hFwd IDSi, hFwd S2i
2 FF hFwd Ai

S2 Ruletable and Grouptable

Match Instructions

inPort = IDS, tpDst = 22 Group 1

inPort = S1, tpDst = 22 Group 2

inPort = GW, tpDst = 22 Group 2

Group Type Actions

1 FF hFwd Ai, hFwd S1i
2 FF hFwd IDSi

Figure 2: Example ruletables and grouptables.

• [GW,S1,IDS,S1,A] if (IDS, S2) fails, and

• [GW,S1,IDS,S2,S1,A] if (S2, A) fails.

Even worse, if the policy required protection against two
link failures then we would also need backup links for the
backup paths; three failures would require backups for the
backups of the backups, and so on.
Even this simple example requires a non-trivial program.

For example, tra�c can reach S1 and S2 under at least four
di↵erent scenarios. To ensure that tra�c is handled cor-
rectly in all possible cases, it is necessary to take into account
every possible interaction between primary and backup paths—
a tedious and error-prone task for the programmer.

OpenFlow. To illustrate the complexity of constructing fault-
tolerant configurations manually, let us see how we would do
this in OpenFlow. The following rule implements the pri-
mary path for SSH tra�c on switch S1:

Match Actions

inPort = GW, tpDst = 22 hFwd IDSi

It consists of a match that specifies packet attributes (e.g.,
transport destination port 22 for SSH tra�c) and a list of
actions that specify how to process matching packets. In
this case, the rule states that all SSH tra�c coming from GW
should be forwarded to IDS. For simplicity, we have replaced
the names of ports with the switches they are connected to—
e.g., in place of the name of the port connecting S1 to GW,
we simply write GW.

Configuration updates. Early versions of OpenFlow did
not support rules that depend upon switch state—e.g., rules
that test whether a link has failed or not. Hence, the only
way to respond to failures was for the controller to explicitly
intercede by installing new rules in response to the failure.

GW

S1

S2

IDS A

Figure 1: Example network.

paths. The FatTire compiler takes programs specified in
terms of paths and translates them to OpenFlow switch con-
figurations that automatically respond to link failures with-
out controller intervention. Compiling FatTire turns out to
be significantly more challenging compard to other SDN lan-
guages like NetCore [3, 10] for several reasons: (i) FatTire
programs are non-deterministic due to the use of regular
expressions; (ii) translating paths to individual switch con-
figurations requires a global analysis, and (iii) there can be
tricky interactions between paths when failures occur. We
have carefully engineered the FatTire compiler to correctly
handle each of these issues.

Overall, the contributions of this paper are as follows:

• We present the design of a new language for writing
fault-tolerant SDN programs that provides paths as a
basic programming construct (§3).

• We describe algorithms for compiling FatTire programs
to OpenFlow switches that take advantage of in-network
fast-failover mechanisms (§4).

[Should we claim the implementation as a contribution
now that it’s complete? –MJR] [Yes, in my opinion.
–JNF]

The next section presents a practical example that moti-
vates the need for declarative fault-tolerance programming
abstractions. The following sections describe our main con-
tributions in detail. We then describe our prototype imple-
mentation of FatTire as an extension of the NetCore com-
piler (§5).[This last sentence could be cut if the implemen-
tation is a contribution. –JNF]

2. PROGRAMMING FAULT TOLERANCE
As motivation, consider the enterprise network shown in
fig. 1 and assume we want to construct a configuration with
the following properties: (i) SSH tra�c arriving at the gate-
way switch (GW) should be eventually delivered to the access
switch (A), (ii) all incoming SSH tra�c should traverse the
middlebox (IDS) before being reaching internal hosts, (iii)
the network should continue forwarding SSH tra�c even if
a single link fails.

It is easy to build a configuration with the first two prop-
erties. For instance, we can forward incoming SSH tra�c
along the path [GW,S1,IDS,S2,A]. But to provide the spec-
ified fault-tolerance property, each of the links in this pri-
mary path also needs a backup. There are numerous possible
backup paths,

• [GW,S2,IDS,S2,A] if (GW, S1) fails,

• [GW,S1,S2,IDS,S2,A] if (S1, IDS) fails,

GW Ruletable and Grouptable

Match Instructions

tpDst = 22 Group 1

Group Type Actions

1 FF hFwd S1i, hFwd S2i
S1 Ruletable and Grouptable

Match Instructions

inPort = GW, tpDst = 22 Group 1

inPort = IDS, tpDst = 22 Group 2

inPort = S2, tpDst = 22 Group 2

Group Type Actions

1 FF hFwd IDSi, hFwd S2i
2 FF hFwd Ai

S2 Ruletable and Grouptable

Match Instructions

inPort = IDS, tpDst = 22 Group 1

inPort = S1, tpDst = 22 Group 2

inPort = GW, tpDst = 22 Group 2

Group Type Actions

1 FF hFwd Ai, hFwd S1i
2 FF hFwd IDSi

Figure 2: Example ruletables and grouptables.

• [GW,S1,IDS,S1,A] if (IDS, S2) fails, and

• [GW,S1,IDS,S2,S1,A] if (S2, A) fails.

Even worse, if the policy required protection against two
link failures then we would also need backup links for the
backup paths; three failures would require backups for the
backups of the backups, and so on.
Even this simple example requires a non-trivial program.

For example, tra�c can reach S1 and S2 under at least four
di↵erent scenarios. To ensure that tra�c is handled cor-
rectly in all possible cases, it is necessary to take into account
every possible interaction between primary and backup paths—
a tedious and error-prone task for the programmer.

OpenFlow. To illustrate the complexity of constructing fault-
tolerant configurations manually, let us see how we would do
this in OpenFlow. The following rule implements the pri-
mary path for SSH tra�c on switch S1:

Match Actions

inPort = GW, tpDst = 22 hFwd IDSi

It consists of a match that specifies packet attributes (e.g.,
transport destination port 22 for SSH tra�c) and a list of
actions that specify how to process matching packets. In
this case, the rule states that all SSH tra�c coming from GW
should be forwarded to IDS. For simplicity, we have replaced
the names of ports with the switches they are connected to—
e.g., in place of the name of the port connecting S1 to GW,
we simply write GW.

Configuration updates. Early versions of OpenFlow did
not support rules that depend upon switch state—e.g., rules
that test whether a link has failed or not. Hence, the only
way to respond to failures was for the controller to explicitly
intercede by installing new rules in response to the failure.

GW

S1

S2

IDS A

Figure 1: Example network.

paths. The FatTire compiler takes programs specified in
terms of paths and translates them to OpenFlow switch con-
figurations that automatically respond to link failures with-
out controller intervention. Compiling FatTire turns out to
be significantly more challenging compard to other SDN lan-
guages like NetCore [3, 10] for several reasons: (i) FatTire
programs are non-deterministic due to the use of regular
expressions; (ii) translating paths to individual switch con-
figurations requires a global analysis, and (iii) there can be
tricky interactions between paths when failures occur. We
have carefully engineered the FatTire compiler to correctly
handle each of these issues.

Overall, the contributions of this paper are as follows:

• We present the design of a new language for writing
fault-tolerant SDN programs that provides paths as a
basic programming construct (§3).

• We describe algorithms for compiling FatTire programs
to OpenFlow switches that take advantage of in-network
fast-failover mechanisms (§4).

[Should we claim the implementation as a contribution
now that it’s complete? –MJR] [Yes, in my opinion.
–JNF]

The next section presents a practical example that moti-
vates the need for declarative fault-tolerance programming
abstractions. The following sections describe our main con-
tributions in detail. We then describe our prototype imple-
mentation of FatTire as an extension of the NetCore com-
piler (§5).[This last sentence could be cut if the implemen-
tation is a contribution. –JNF]

2. PROGRAMMING FAULT TOLERANCE
As motivation, consider the enterprise network shown in
fig. 1 and assume we want to construct a configuration with
the following properties: (i) SSH tra�c arriving at the gate-
way switch (GW) should be eventually delivered to the access
switch (A), (ii) all incoming SSH tra�c should traverse the
middlebox (IDS) before being reaching internal hosts, (iii)
the network should continue forwarding SSH tra�c even if
a single link fails.

It is easy to build a configuration with the first two prop-
erties. For instance, we can forward incoming SSH tra�c
along the path [GW,S1,IDS,S2,A]. But to provide the spec-
ified fault-tolerance property, each of the links in this pri-
mary path also needs a backup. There are numerous possible
backup paths,

• [GW,S2,IDS,S2,A] if (GW, S1) fails,

• [GW,S1,S2,IDS,S2,A] if (S1, IDS) fails,

GW Ruletable and Grouptable

Match Instructions

tpDst = 22 Group 1

Group Type Actions

1 FF hFwd S1i, hFwd S2i
S1 Ruletable and Grouptable

Match Instructions

inPort = GW, tpDst = 22 Group 1

inPort = IDS, tpDst = 22 Group 2

inPort = S2, tpDst = 22 Group 2

Group Type Actions

1 FF hFwd IDSi, hFwd S2i
2 FF hFwd Ai

S2 Ruletable and Grouptable

Match Instructions

inPort = IDS, tpDst = 22 Group 1

inPort = S1, tpDst = 22 Group 2

inPort = GW, tpDst = 22 Group 2

Group Type Actions

1 FF hFwd Ai, hFwd S1i
2 FF hFwd IDSi

Figure 2: Example ruletables and grouptables.

• [GW,S1,IDS,S1,A] if (IDS, S2) fails, and

• [GW,S1,IDS,S2,S1,A] if (S2, A) fails.

Even worse, if the policy required protection against two
link failures then we would also need backup links for the
backup paths; three failures would require backups for the
backups of the backups, and so on.
Even this simple example requires a non-trivial program.

For example, tra�c can reach S1 and S2 under at least four
di↵erent scenarios. To ensure that tra�c is handled cor-
rectly in all possible cases, it is necessary to take into account
every possible interaction between primary and backup paths—
a tedious and error-prone task for the programmer.

OpenFlow. To illustrate the complexity of constructing fault-
tolerant configurations manually, let us see how we would do
this in OpenFlow. The following rule implements the pri-
mary path for SSH tra�c on switch S1:

Match Actions

inPort = GW, tpDst = 22 hFwd IDSi

It consists of a match that specifies packet attributes (e.g.,
transport destination port 22 for SSH tra�c) and a list of
actions that specify how to process matching packets. In
this case, the rule states that all SSH tra�c coming from GW
should be forwarded to IDS. For simplicity, we have replaced
the names of ports with the switches they are connected to—
e.g., in place of the name of the port connecting S1 to GW,
we simply write GW.

Configuration updates. Early versions of OpenFlow did
not support rules that depend upon switch state—e.g., rules
that test whether a link has failed or not. Hence, the only
way to respond to failures was for the controller to explicitly
intercede by installing new rules in response to the failure.

GW

S1

S2

IDS A

Figure 1: Example network.

• We present the design of a new language for writ-
ing fault-tolerant SDN programs that provides paths
as a basic programming construct (§3).

• We describe algorithms for compiling FatTire pro-
grams to OpenFlow switches that take advantage
of in-network fast-failover mechanisms (§4).

• We develop techniques for analyzing OpenFlow switch
configurations to check that they provide the re-
quired degree of fault tolerance (§5).

The next section presents a practical example that mo-
tivates the need for declarative fault-tolerance program-
ming abstractions. The following sections describe our
main contributions in detail. We then describe our pro-
totype implementation of FatTire as an extension of the
NetCore compiler (§6).

2. PROGRAMMING FAULT TOLERANCE
As motivation, consider the enterprise network shown
in fig. 1 and assume we want to construct a configura-
tion with the following properties: (i) SSH tra�c ar-
riving at the gateway switch (GW) should be eventu-
ally delivered to the access switch (A), (ii) all incoming
SSH tra�c should traverse the middlebox (IDS) before
being reaching internal hosts, (iii) the network should
continue to forward SSH tra�c even if a single link fails.

It is easy to build a configuration that has the first
two properties. For instance, we can forward incom-
ing SSH tra�c along the path [GW,S1,IDS,S2,A]. But
to provide the specified fault-tolerance property, each
of the links in this primary path also needs a backup.
There are numerous possible backup paths,

• [GW,S2,IDS,S2,A] if (GW, S1) fails,

• [GW,S1,S2,IDS,S2,A] if (S1, IDS) fails,

• [GW,S1,IDS,S1,A] if (IDS, S2) fails, and

• [GW,S1,IDS,S2,S1,A] if (S2, A) fails.

Even worse, if the policy required protection against two
link failures then we would also need backup links for
these backup paths; three failures would require back-
ups for our backups for our backups, and so on.

GW Ruletable and Grouptable

Match Instructions

tpDst = 22 Group 1

Group Type Actions

1 FF hFwd S1i, hFwd S2i

S1 Ruletable and Grouptable

Match Instructions

inPort = GW, tpDst = 22 Group 1

inPort = IDS, tpDst = 22 Group 2

inPort = S2, tpDst = 22 Group 2

Group Type Actions

1 FF hFwd IDSi, hFwd S2i
2 FF hFwd Ai

S2 Ruletable and Grouptable

Match Instructions

inPort = IDS, tpDst = 22 Group 1

inPort = S1, tpDst = 22 Group 2

inPort = GW, tpDst = 22 Group 2

Group Type Actions

1 FF hFwd Ai, hFwd S1i
2 FF hFwd IDSi

Figure 2: Example ruletables and grouptables.

Even this simple example requires a non-trivial pro-
gram. For example, tra�c can reach S1 and S2 under
at least four di↵erent scenarios. To ensure that tra�c is
handled correctly in every possible case, it is necessary
to take into account all possible interactions between
primary and backup paths—a tedious and error-prone
task for the network programmer.

OpenFlow. To illustrate the complexity of constructing
fault-tolerant configurations manually, let us see how we
would do this in OpenFlow. The following rule imple-
ments the primary path for SSH tra�c on switch S1:

Match Actions

inPort = GW, tpDst = 22 hFwd IDSi

It consists of a match that specifies packet attributes
(e.g., transport destination port 22 for SSH tra�c) and
a list of actions that specify how to process matching
packets. In this case, the rule states that all SSH traf-
fic coming from GW should be forwarded to IDS. For
simplicity, we have replaced the names of ports with
the switches they are connected to—e.g., we replace the
name of the port connecting S1 to GW with GW.

Configuration updates. Early versions of OpenFlow did
not support rules that depend upon switch state—e.g.,
rules that test whether a link has failed or not. Hence,
the only way to respond to failures was for the con-
troller to explicitly intercede by installing new rules in
response to the failure. For example, if the switch S1
detected a failure on the link to IDS, it would notify the

2

OpenFlow Fast Failover

Friday, August 16, 13

Why not Frenetic?
• Frenetic provides a declarative language for

expressing forwarding policies...

• ... in terms of hop-by-hop forwarding steps

• Example:

 (GW ! S1) + (S1 ! IDS)
+ (IDS ! S2) + (S2 ! A)

• What to do if next hop fails?

7

GW IDS AS1 S2

Friday, August 16, 13

Our Approach: FatTire
“Fault Tolerating Regular Expressions”
Key Ingredients:
• Hop-by-hop forwarding → paths
• Deterministic → non-deterministic
• Explicit fault-tolerance constructs

Challenges:
• FatTire programs may specify overlapping paths
• OpenFlow tables are deterministic
• Global analysis to provide fault-tolerance guarantees

8

Friday, August 16, 13

GW

S1

S2

IDS A

Figure 1: Example network.

• We present the design of a new language for writ-
ing fault-tolerant SDN programs that provides paths
as a basic programming construct (§3).

• We describe algorithms for compiling FatTire pro-
grams to OpenFlow switches that take advantage
of in-network fast-failover mechanisms (§4).

• We develop techniques for analyzing OpenFlow switch
configurations to check that they provide the re-
quired degree of fault tolerance (§5).

The next section presents a practical example that mo-
tivates the need for declarative fault-tolerance program-
ming abstractions. The following sections describe our
main contributions in detail. We then describe our pro-
totype implementation of FatTire as an extension of the
NetCore compiler (§6).

2. PROGRAMMING FAULT TOLERANCE
As motivation, consider the enterprise network shown
in fig. 1 and assume we want to construct a configura-
tion with the following properties: (i) SSH tra�c ar-
riving at the gateway switch (GW) should be eventu-
ally delivered to the access switch (A), (ii) all incoming
SSH tra�c should traverse the middlebox (IDS) before
being reaching internal hosts, (iii) the network should
continue to forward SSH tra�c even if a single link fails.

It is easy to build a configuration that has the first
two properties. For instance, we can forward incom-
ing SSH tra�c along the path [GW,S1,IDS,S2,A]. But
to provide the specified fault-tolerance property, each
of the links in this primary path also needs a backup.
There are numerous possible backup paths,

• [GW,S2,IDS,S2,A] if (GW, S1) fails,

• [GW,S1,S2,IDS,S2,A] if (S1, IDS) fails,

• [GW,S1,IDS,S1,A] if (IDS, S2) fails, and

• [GW,S1,IDS,S2,S1,A] if (S2, A) fails.

Even worse, if the policy required protection against two
link failures then we would also need backup links for
these backup paths; three failures would require back-
ups for our backups for our backups, and so on.

GW Ruletable and Grouptable

Match Instructions

tpDst = 22 Group 1

Group Type Actions

1 FF hFwd S1i, hFwd S2i

S1 Ruletable and Grouptable

Match Instructions

inPort = GW, tpDst = 22 Group 1

inPort = IDS, tpDst = 22 Group 2

inPort = S2, tpDst = 22 Group 2

Group Type Actions

1 FF hFwd IDSi, hFwd S2i
2 FF hFwd Ai

S2 Ruletable and Grouptable

Match Instructions

inPort = IDS, tpDst = 22 Group 1

inPort = S1, tpDst = 22 Group 2

inPort = GW, tpDst = 22 Group 2

Group Type Actions

1 FF hFwd Ai, hFwd S1i
2 FF hFwd IDSi

Figure 2: Example ruletables and grouptables.

Even this simple example requires a non-trivial pro-
gram. For example, tra�c can reach S1 and S2 under
at least four di↵erent scenarios. To ensure that tra�c is
handled correctly in every possible case, it is necessary
to take into account all possible interactions between
primary and backup paths—a tedious and error-prone
task for the network programmer.

OpenFlow. To illustrate the complexity of constructing
fault-tolerant configurations manually, let us see how we
would do this in OpenFlow. The following rule imple-
ments the primary path for SSH tra�c on switch S1:

Match Actions

inPort = GW, tpDst = 22 hFwd IDSi

It consists of a match that specifies packet attributes
(e.g., transport destination port 22 for SSH tra�c) and
a list of actions that specify how to process matching
packets. In this case, the rule states that all SSH traf-
fic coming from GW should be forwarded to IDS. For
simplicity, we have replaced the names of ports with
the switches they are connected to—e.g., we replace the
name of the port connecting S1 to GW with GW.

Configuration updates. Early versions of OpenFlow did
not support rules that depend upon switch state—e.g.,
rules that test whether a link has failed or not. Hence,
the only way to respond to failures was for the con-
troller to explicitly intercede by installing new rules in
response to the failure. For example, if the switch S1
detected a failure on the link to IDS, it would notify the

2

• Connectivity from GW to A

• SSH traffic traverses IDS

• SSH is 1 link fault tolerant

Traffic

 (All ! [GW * A])

∩ SSH ! [* IDS *]
 ∪ ¬SSH ! [*]

∩ SSH ! [*] with 1
 ∪ ¬SSH ! [*]

9

()

()

Friday, August 16, 13

Programming in FatTire
Write programs in terms of regular expressions on
forwarding paths

• [GW * A]

• [GW (S1 | S2) A]

Use annotations to specify desired fault tolerance

• SSH ! [*] with 1

• ¬SSH ! [*] = ¬SSH ! [*] with 0

10

Friday, August 16, 13

Programming in FatTire

Can combine policies with intersection and union:

• Intersection adds restrictions on paths

 (All ! [GW * A]) ∩ (SSH ! [*] with 1)
= SSH ! [GW * A] with 1

• Union loosens restrictions on paths

 (All ! [GW S1 A]) ∪ (All ! [GW S2 A])
= All ! [GW (S1 | S2) A]

11

Friday, August 16, 13

FatTire Compiler

1. Normalize into Disjunctive Normal Form

2. Partition into traffic equivalence classes

3. Compute fault-tolerant forwarding graph

4. Output hop-by-hop Frenetic policy and
compile to OpenFlow rules

12

∪

∩
...∪

∩ ∩ ∩

GW

S1 S2

IDS IDS S1

...

!!((GW!!!!S1)!⊕!(GW!!!S2))!

+!((S1!!!IDS)!⊕!(S2!!!IDS))

Friday, August 16, 13

Implementation
•Full working prototype implemented in OCaml

•Based on an extension of the Frenetic controller with
support for OpenFlow 1.3

•Tested on CPqD 1.3 software switch

•See paper for preliminary experimental evaluation
using Mininet

•Code available from
 https://github.com/frenetic-lang/fattire
under an open-source license

13

Friday, August 16, 13

https://github.com/frenetic-lang/fattire
https://github.com/frenetic-lang/fattire

Future Work
• Extend to handle quantitative path properties
• Bandwidth
• Latency

• Provide first-class support for other topology
changes such as switch failures

• Investigate applications of non-deterministic
network programs

• Investigate other recovery mechanisms

14

Friday, August 16, 13

Thank You

15

Papers, source code,
examples, tutorials, etc.
http://frenetic-­‐lang.org

FatTire Team:

Marco Canini

Arjun Guha Nate Foster

Mark Reitblatt

Friday, August 16, 13

http://frenetic-lang.org
http://frenetic-lang.org

Backup Slides

16

Friday, August 16, 13

Update consistency

• Semantics of failure recovery => per-packet
consistency

17

Friday, August 16, 13

Regular Expression
Derivatives

18

Friday, August 16, 13

Path Expressions as
verification spec

• Dual use as verification specification?

19

Friday, August 16, 13

Interaction of paths

 All ! [S1.FW.S3]
∪ ALL ! [S2.FW.S4]

S2

S1 S3

S4

FW

20

Friday, August 16, 13

