
Mark Reitblatt, Nate Foster,
Jen Rexford, and Dave Walker

Consistent Updates for
Software-De!ned Networks:
Change You Can Believe In!

Monday, November 14, 11

“[A] network change was
performed as part of our normal
AWS scaling activities...
This change disconnected both
the primary and secondary
network simultaneously, leaving
the affected nodes completely
isolated from one another.”

Monday, November 14, 11

Prior Work

3

1

Avoiding transient loops during the convergence of
link-state routing protocols

Pierre Francois and Olivier Bonaventure
Université catholique de Louvain

Abstract—When using link-state protocols such as OSPF or
IS-IS, forwarding loops can occur transiently when the routers
adapt their forwarding tables as a response to a topological
change. In this paper1, we present a mechanism that lets the
network converge to its optimal forwarding state without risking
any transient loops and the related packet loss. The mechanism
is based on an ordering of the updates of the forwarding tables
of the routers. Our solution can be used in the case of a
planned change in the state of a set of links and in the case
of unpredictable changes when combined with a local protection
scheme. The supported topology changes are link transitions from
up to down, down to up, and updates of link metrics. Finally,
we show by simulations that sub-second loop free convergence is
possible on a large Tier-1 ISP network.

I. INTRODUCTION

The link-state intradomain routing protocols that are used
in IP networks [2], [3] were designed when IP networks
were research networks carrying best-effort packets. The same
protocols are now used in large commercial ISPs with strin-
gent Service Level Agreements (SLA). Furthermore, for most
Internet Service Providers, fast convergence in case of failures
is a key problem that must be solved [4], [5]. Today, customers
are requiring 99.99% reliability or better and providers try to
avoid all packet losses.
Vendors are actively working on improving their implemen-

tations to achieve faster convergence [6], [5]. Solving the fast
convergence problem is complex as it involves detecting the
failure on the attached router, producing a new Link State
Packet (LSP) describing the failure, flooding this new LSP
and finally updating the Forwarding Information Base (FIB)
in all the routers using the failed resources in the network.
Sub-second convergence has been made possible, but the sub-
50 msec target can only be achieved by the means of a local
restoration scheme. Achieving very fast convergence in an IP
network will thus require temporary tunnels to quickly reroute
traffic around failures, as in MPLS networks [7]. Several solu-
tions to establish such local protections have been proposed in
the literature [8], [9], [10], [11], [12]. Unfortunately, in an IP
network, using a protection tunnel to locally reroute the traffic
around the failed link is not sufficient as transient loops may
occur during the update of the FIBs of the other routers in the
network.
To understand this problem, let us consider the Inter-

1A preliminary version of this paper was presented at INFOCOM 2005 [1].

NY

WA

AT

HS

KC

CH

600

1200

550

900

700

850

250
IP

DN

ST

SV

LA

250

1900

350

1300

2100850

650

Packet flows towards KC before the failure
Packet flows towards KC after the convergence

Fig. 1: Internet2 topology with IGP costs

net2/Abilene backbone2. Figure 1 shows the IGP topology of
this network. Assume that the link between IP and KC fails
but was protected by an MPLS tunnel between IP and KC via
AT and HS. When AT receives a packet with destination DN,
it forwards it to IP, which forwards it back to AT, but inside
the protection tunnel, so that KC will decapsulate the packet,
and forward it to its destination, DN.
This suboptimal routing should not last long, and thus after a

while the routers must converge, i.e., adapt to the new shortest
paths inside the network, and remove the tunnel. As the link
is protected, the reachability of the destinations is still ensured
and thus the adaptation to the topological change should be
done by avoiding transient loops rather than by urging the
updates on each router. The new LSP generated by IP indicates
that IP is now only connected to CH and AT. Before the failure,
the shortest path from WA to KC, DN, ST and SV was via
NY, CH and IP. After the failure, NY will send its packets
to KC, DN, ST and SV via WA, AT and HS. During the
IGP convergence following the failure of link KC-IP, transient
loops may occur between NY and WA depending on the order
of the forwarding table updates performed by the routers. If
NY updates its FIB before WA, the packets sent by NY to
KC via WA will loop on the WA-NY link. To avoid causing
a transient loop between WA and NY, WA should update its
2This network is much smaller than large ISP backbones, but it is one of

the few networks whose detailed topology is publicly available. We verified
that similar transient loops could occur in larger ISP backbones, but the size
of those backbones prevented us from using them as an example in this paper.
Note that the IGP metrics have been rounded off to facilitate the understanding
of the topology. The round off does not influence the routing tables of the
network.

Seamless Network-Wide IGP Migrations∗

Laurent Vanbever∗, Stefano Vissicchio†,
Cristel Pelsser‡, Pierre Francois∗, Olivier Bonaventure∗

∗ Université catholique de Louvain † Roma Tre University ‡ Internet Initiative Japan
∗{laurent.vanbever, pierre.francois, olivier.bonaventure} @uclouvain.be

†vissicch@dia.uniroma3.it ‡cristel@iij.ad.jp

ABSTRACT

Network-wide migrations of a running network, such as
the replacement of a routing protocol or the modification of
its configuration, can improve the performance, scalability,
manageability, and security of the entire network. However,
such migrations are an important source of concerns for net-
work operators as the reconfiguration campaign can lead to
long and service-affecting outages.

In this paper, we propose a methodology which addresses
the problem of seamlessly modifying the configuration of
commonly used link-state Interior Gateway Protocols (IGP).
We illustrate the benefits of our methodology by consider-
ing several migration scenarios, including the addition or the
removal of routing hierarchy in an existing IGP and the re-
placement of one IGP with another. We prove that a strict
operational ordering can guarantee that the migration will
not create IP transit service outages. Although finding a safe
ordering is NP-complete, we describe techniques which effi-
ciently find such an ordering and evaluate them using both
real-world and inferred ISP topologies. Finally, we describe
the implementation of a provisioning system which automat-
ically performs the migration by pushing the configurations
on the routers in the appropriate order, while monitoring
the entire migration process.

Categories and Subject Descriptors: C.2.3 [Computer-
Communication Networks]: Network Operations

General Terms: Algorithms, Management, Reliability

Keywords: Interior Gateway Protocol (IGP), configura-
tion, migration, summarization, design guidelines

1. INTRODUCTION
Among all network routing protocols, link-state Interior

Gateway Protocols (IGPs), like IS-IS and OSPF, play a crit-
ical role. Indeed, an IGP enables end-to-end reachability

∗Minor typo corrected in Section 2.1

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’11, August 15–19, 2011, Toronto, Ontario, Canada.
Copyright 2011 ACM 978-1-4503-0797-0/11/08 ...$10.00.

between any pair of routers within the network of an Au-
tonomous System (AS). Many other routing protocols, like
BGP, LDP or PIM, also rely on an IGP to properly work.
As the network grows or when new services have to be de-
ployed, network operators often need to perform large-scale
IGP reconfiguration [1]. Migrating an IGP is a complex pro-
cess since all the routers have to be reconfigured in a proper
manner. Simple solutions like restarting the network with
the new configurations do not work since most of the net-
works carry traffic 24/7. Therefore, IGP migrations have
to be performed gradually, while the network is running.
Such operations can lead to significant traffic losses if they
are not handled with care. Unfortunately, network operators
typically lack appropriate tools and techniques to seamlessly
perform large, highly distributed changes to the configura-
tion of their networks. They also experience difficulties in
understanding what is happening during a migration since
complex interactions may arise between upgraded and non-
upgraded routers. Consequently, as confirmed by many pri-
vate communications with operators, large-scale IGP migra-
tions are often avoided until they are absolutely necessary,
thus hampering network evolvability and innovation.

Most of the time, network operators target three aspects
of the IGP when they perform large-scale migrations. First,
they may want to replace the current protocol with another.
For instance, several operators have switched from OSPF
to IS-IS because IS-IS is known to be more secure against
control-plane attacks [2, 3]. Operators may also want to
migrate to an IGP that is not dependent on the address
family (e.g., OSPFv3, IS-IS) in order to run only one IGP
to route both IPv4 and IPv6 traffic [4, 3], or to change IGP
in order to integrate new equipments which are not compli-
ant with the adopted one [5]. Second, when the number of
routers exceeds a certain critical mass, operators often intro-
duce a hierarchy within their IGP to limit the control-plane
stress [6, 7]. Removing a hierarchy might also be needed, for
instance, to better support some traffic engineering exten-
sions [8]. Another reason operators introduce hierarchy is to
have more control on route propagation by tuning the way
routes are propagated from one portion of the hierarchy to
another [1]. Third, network operators also modify the way
the IGP learns or announces the prefixes by introducing or
removing route summarization. Route summarization is an
efficient way to reduce the number of entries in the routing
tables of the routers as IGP networks can currently track
as many as 10,000 prefixes [9]. Route summarization also
helps improving the stability by limiting the visibility of lo-
cal events. Actually, some IGP migrations combine several

Consensus Routing: The Internet as a Distributed System

John P. John⇤ Ethan Katz-Bassett⇤ Arvind Krishnamurthy⇤ Thomas Anderson⇤

Arun Venkataramani†

Abstract
Internet routing protocols (BGP, OSPF, RIP) have tra-

ditionally favored responsiveness over consistency. A
router applies a received update immediately to its for-
warding table before propagating the update to other
routers, including those that potentially depend upon the
outcome of the update. Responsiveness comes at the cost
of routing loops and blackholes—a router A thinks its
route to a destination is via B but B disagrees. By favor-
ing responsiveness (a liveness property) over consistency
(a safety property), Internet routing has lost both.

Our position is that consistent state in a distributed sys-
tem makes its behavior more predictable and securable.
To this end, we present consensus routing, a consistency-
first approach that cleanly separates safety and liveness
using two logically distinct modes of packet delivery: a
stable mode where a route is adopted only after all depen-
dent routers have agreed upon it, and a transient mode that
heuristically forwards the small fraction of packets that
encounter failed links. Somewhat surprisingly, we find
that consensus routing improves overall availability when
used in conjunction with existing transient mode heuris-
tics such as backup paths, deflections, or detouring. Ex-
periments on the Internet’s AS-level topology show that
consensus routing eliminates nearly all transient discon-
nectivity in BGP.

1 Introduction
Internet routing, especially interdomain routing, has tra-
ditionally favored responsiveness, i.e., how quickly the
network reacts to changes, over consistency, i.e., ensuring
that packets traverse adopted routes. A router applies a re-
ceived update immediately to its forwarding table before
propagating the update to other routers, including those
that potentially depend upon the outcome of the update.
Responsiveness comes at the cost of availability: a router
A thinks its route to a destination is via B but B disagrees,
either because 1) B’s old route to the destination is via
A, causing loops, or 2) B does not have a current route
to the destination, causing blackholes. BGP updates are
known to cause up to 30% packet-loss for two minutes or
more after a routing change, even though usable physical
routes exist [26]. Further, transient loops account for 90%
of all packet loss according to a Sprint network study [16].
Even a recovering link can cause unavailability lasting

⇤Dept. of Computer Science, Univ. of Washington, Seattle.
†University of Massachusetts Amherst.

tens of seconds due to an inconsistent view among routers
in a single autonomous system [44].

Our position is that the lack of consistency is at the root
of bigger problems in Internet routing beyond availabil-
ity. First, protocol behavior is complex and unpredictable
as routers by design operate upon inconsistent distributed
state, e.g., by forwarding packets along loops. There is
no indicator of when, if at all, the network converges to
a consistent state. Second, unpredictable behavior makes
the system more vulnerable to misconfiguration or abuse,
as it is difficult to distinguish between expected behav-
ior and misbehavior. Third, unpredictable behavior sti-
fles innovation in the long term, e.g., network operators
are reluctant to adopt protocol optimizations such as in-
terdomain traffic engineering [1] because they have to
worry about its poorly understood side-effects. Perhaps
most tellingly, despite a decade of research investigating
the complex dynamics of interdomain routing, the goal
of a simple, practical routing protocol that allows gen-
eral routing policies and achieves high availability has
remained elusive.

Our primary contribution, consensus routing, achieves
the above goal. The key insight is to recognize consis-
tency as a safety property and responsiveness as a liveness
property and systematically separate the two design con-
cerns, thereby borrowing an old lesson from distributed
system design. Consistency safety means that a router
forwards a packet strictly along the path adopted by the
upstream routers unless the packet encounters a failed
link. Liveness means that the system reacts quickly to
failures or policy changes. Separating safety and liveness
improves end-to-end availability, and, perhaps more im-
portantly, makes system behavior simple to describe and
understand.

Consensus routing achieves this separation using two
logically distinct modes of packet delivery: 1) A stable
mode ensures that a route is adopted only after all depen-
dent routers have agreed upon a consistent view of global
state. Every epoch, routers participate in a distributed
snapshot and consensus protocol to determine whether or
not updates are complete, i.e., they have been processed
by every router that depends on the update. The output of
the consensus serves as an explicit indicator that routers
may adopt a consistent set of routes processed before the
snapshot. 2) A transient mode ensures high availability
when a packet encounters a router that does not possess a
stable route, either because the corresponding link failed

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 19, NO. 4, AUGUST 2011 1097

Graceful Network State Migrations
Saqib Raza, Member, IEEE, Yuanbo Zhu, and Chen-Nee Chuah, Senior Member, IEEE

Abstract—A significant fraction of network events (such
as topology or route changes) and the resulting performance
degradation stem from premeditated network management and
operational tasks. This paper introduces a general class of Graceful
Network State Migration (GNSM) problems, where the goal is to
discover the optimal sequence of operations that progressively
transition the network from its initial to a desired final state while
minimizing the overall performance disruption. We investigate two
specific GNSM problems: 1) Link Weight Reassignment Sched-
uling (LWRS) studies the optimal ordering of link weight updates
to migrate from an existing to a new link weight assignment; and
2) Link Maintenance Scheduling (LMS) looks at how to schedule
link deactivations and subsequent reactivations for maintenance
purposes. LWRS and LMS are both combinatorial optimization
problems. We use dynamic programming to find the optimal
solutions when the problem size is small, and leverage ant colony
optimization to get near-optimal solutions for large problem sizes.
Our simulation study reveals that judiciously ordering network
operations can achieve significant performance gains. Our GNSM
solution framework is generic and applies to similar problems
with different operational contexts, underlying network protocols
or mechanisms, and performance metrics.

Index Terms— Communication system operations and man-
agement, computer network management, network maintenance,
network upgrade.

I. INTRODUCTION

T HE INTERNET has been an enabling technology
for mission-critical applications and services such as

Voice-over-IP, virtual private networks (VPNs), e-commerce
applications, and multimedia streaming. Such applications
rely upon consistent quality-of-service (QoS) provisioning
by Internet service providers (ISPs), with five-nines avail-
ability (99.999% uptime) becoming the norm rather than the
exception. The end-to-end perceived QoS can potentially be
affected due to the dynamic nature of networks. For instance,
network topology may change due to transient router/link out-
ages or long-term network engineering. Furthermore, protocol
configuration parameters may be altered to migrate from one
setting to another. Ideally, QoS guarantees should persist across
such dynamic conditions.

Manuscript received June 23, 2009; revised June 16, 2010; accepted
November 15, 2010; approved by IEEE/ACM TRANSACTIONS ON NETWORKING
Editor Z. M. Mao. Date of publication January 10, 2011; date of current version
August 17, 2011.

S. Raza and Y. Zhu are with the Data Center Switching Technology
Group, Cisco Systems, San Jose, CA 95134 USA (e-mail: sraza@ucdavis.edu;
juzhu@ucdavis.edu).

C.-N. Chuah is with the Department of Electrical and Computer Engi-
neering, University of California, Davis, Davis, CA 95616 USA (e-mail:
chuah@ucdavis.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNET.2010.2097604

Some of these dynamic changes are inadvertent, e.g., ones
due to faulty interfaces, router crashes, and accidental fiber cuts.
However, other changes ensue from deliberate and premedi-
tated actions of network operators (e.g., routine maintenance).
A failure characterization study of an IP backbone [18] observed
that planned maintenance activities account for more than 20%
of transient failures. Other studies [8] have also observed the
prevalence of such planned maintenance activities. Premedi-
tated network tasks also include network upgrade activities such
as adding new routers or overhauling link capacity. Another ex-
ample of a premeditated network task is migrating an existing
OSPF [20] or IS-IS [25]1 link weight assignment to a new as-
signment that has been optimized based on the most up-to-date
traffic matrix estimates.

In the case of premeditated tasks, network operators have
the prerogative to decide the sequence of atomic operations
that comprise such a task. This paper2 introduces a general
class of problems referred to as Graceful Network State Mi-
gration (GNSM) problems, which typically involve migrating
a network from its initial state to a final state by executing a
series of atomic operations. Each of these operations may cause
some performance disruption that is a function of the network’s
changed state. The GNSM problem is to discover the sequence
of operations that progressively transition the network to the
final state while minimizing the overall disruption. This paper
looks at two specific GNSM problems, described as follows.

A. Link Weight Reassignment Scheduling

Setting link weights is the primary tool used by network op-
erators to control network load distribution and traffic engi-
neering [9]–[11], [22]. Link weights are optimized based on an
estimate of the traffic matrix. They are usually not modified in
response to short-term fluctuations in the traffic matrix. How-
ever, the estimated traffic matrix may change significantly over
a longer period of time, prompting network operators to reop-
timize and reset link weights. In such a case, network opera-
tors need to migrate from one weight setting to another. The
sequence in which the link weights are changed determines the
disruption to network traffic during this migration process.

We illustrate this with the help of a toy example. Fig. 1 gives a
network with the arc labels representing IGP link weights. Sup-
pose all links have capacity , and traffic demands between node
pairs and are both . The traffic demand be-
tween all other node pairs is 0. The link weights depicted in
Fig. 1 are optimal for such a traffic matrix given the objec-
tive of minimizing the maximum link utilization (MLU). Now
suppose that the traffic demand between node pair in-
creases to . Shortest-path routing using Equal Cost Multi-

1Most common intradomain (IGP) protocols.
2This paper is an extended version of our previous work [28].

1063-6692/$26.00 © 2011 IEEE

Seamless IGP migration

Avoiding transient loops

Consensus routing

Graceful state migration

Monday, November 14, 11

F2

I

F1 F3

Example

4

Src Traffic Action

1-2 Web Allow

1-2 Other Drop

Any Allow

Security Policy

Monday, November 14, 11

Src Tra!c Action

1-2 Web Allow

1-2 Other Drop

Any Allow

Web: ✓
✱: ✕ ✱: ✓

F3F2F1

✱: ✓

1-2: F1
0-3: F2
0-4: F3

I

Initial Con!guration

5

Monday, November 14, 11

0-1: F1
0-2: F2
3-4: F3

I

Web: ✓
✱: ✕

F3F2F1

Web: ✓
✱: ✕ ✱: ✓

Web: ✓
✱: ✕ ✱: ✓

F3F2F1

✱: ✓

1-2: F1
0-3: F2
0-4: F3

I

Redistribute Con!guration

6

Monday, November 14, 11

 Program

 Runtime

Controller

Software De!ned Networks (SDN)

7

Web: ✓
✱: ✕ ✱: ✓

F3F2F1

✱: ✓

1-2: F1
0-3: F2
0-4: F3

I

Monday, November 14, 11

SDN Program

8

void	
 main()	
 {
...	
 monitor	
 ...
Conf	
 =	
 balance_load();
install(F1,	
 Conf[F1]);
install(
 I,	
 Conf[I])	
 ;
...
}

Monday, November 14, 11

Src Tra!c Action

1-2 Web Allow

1-2 Other Drop

Any Allow

Web: ✓
✱: ✕ ✱: ✓

F3F2F1

✱: ✓

1-2: F1
0-3: F2
0-4: F3

I

Initial Con!guration

9

Monday, November 14, 11

Src Tra!c Action

1-2 Web Allow

1-2 Other Drop

Any Allow

1-2: F1
0-3: F2
0-4: F3

I

Web: ✓
✱: ✕ ✱: ✓

F3F2F1

✱: ✓

Initial Con!guration

10

Monday, November 14, 11

Src Tra!c Action

1-2 Web Allow

1-2 Other Drop

Any Allow

0-1: F1
0-2: F2
3-4: F3

I

Web: ✓
✱: ✕ ✱: ✓

F3F2F1

✱: ✓

Updating Con!guration

11

Monday, November 14, 11

Src Tra!c Action

1-2 Web Allow

1-2 Other Drop

Any Allow

0-1: F1
0-2: F2
3-4: F3

I

Web: ✓
✱: ✕ ✱: ✓

F3F2F1

✱: ✓

Updating Con!guration

12

�

Monday, November 14, 11

Src Tra!c Action

1-2 Web Allow

1-2 Other Drop

Any Allow

0-1: F1
0-2: F2
3-4: F3

I

Web: ✓
✱: ✕ ✱: ✓

F3F2F1

✱: ✓

Updating Con!guration

13

�

Monday, November 14, 11

Src Tra!c Action

1-2 Web Allow

1-2 Other Drop

Any Allow

0-1: F1
0-2: F2
3-4: F3

I

Web: ✓
✱: ✕ ✱: ✓

F3F2F1

✱: ✓

Updating Con!guration

14

�

Monday, November 14, 11

Src Tra!c Action

1-2 Web Allow

1-2 Other Drop

Any Allow

0-1: F1
0-2: F2
3-4: F3

I

Web: ✓
✱: ✕ ✱: ✓

F3F2F1

✱: ✓

Updating Con!guration

15

�

Monday, November 14, 11

Src Tra!c Action

1-2 Web Allow

1-2 Other Drop

Any Allow

0-1: F1
0-2: F2
3-4: F3

I

Web: ✓
✱: ✕ ✱: ✓

F3F2F1

✱: ✓

Updating Con!guration

16

�

Monday, November 14, 11

Bad Update Order

F1

I

Monday, November 14, 11

F3F2F1

F3IF2 F3IF1 IF2F1

F2F3 IF2 F1F3 IF2 F1F2IF1F3I F3I F2I

F3F2IF3 F2I F3F1IF3 F2S F2F1IF2 F1I

I

F3F2F1

F3F2 F1F2F3F1

F3 F2 F1F3 F1 F2

Bad Update Order

F1

I

Monday, November 14, 11

F3F2F1

F3IF2 F3IF1 IF2F1

F2F3 IF2 F1F3 IF2 F1F2IF1F3I F3I F2S

F3F2IF3 F2I F3F1IF3 F2I F2F1IF2 F1I

I

F3F2F1

F3F2 F1F2F3F1

F3 F2 F1F3 F1 F2

Bad Update Order

Safe Broken Connectivity Broken Security

Monday, November 14, 11

Towards a Solution

18

Monday, November 14, 11

Towards a Solution

18

Updating individual switches doesn’t work!

Monday, November 14, 11

Towards a Solution

18

Updating individual switches doesn’t work!

What’s the solution?

• Don’t implement updates rule-by-rule
and switch-by-switch!

Monday, November 14, 11

Towards a Solution

18

Updating individual switches doesn’t work!

What’s the solution?

• Don’t implement updates rule-by-rule
and switch-by-switch!

• Leverage the run-time system to
handle tedious, low-level details

Monday, November 14, 11

SDN Program

19

void	
 main()	
 {
...	
 monitor	
 ...
Conf	
 =	
 balance_load();
install(Conf);
}

Monday, November 14, 11

Per-packet Consistency

20

An update from con!guration A to
con!guration B is per-packet consistent
if each packet is routed according to either
con!guration A or B.

Monday, November 14, 11

Path Properties

21

A path property ϕ speci!es the legal
paths that a packet can take through a
network N.

Formally: ϕ⊆ Packet x Paths(N).

• Loop-freedom
• “Block SSH traffic from 10/8”
• “All Web traffic waypoints through switch 5”

Monday, November 14, 11

SDN Program

22

void	
 main()	
 {
...	
 monitor	
 ...
Conf	
 =	
 balance_load();
install(perpacket,	
 Conf);
}

Monday, November 14, 11

Beyond Path Properties

23

 Not path properties:
• In-order delivery
• Flow affinity

An update from con!guration A to
con!guration B is per-"ow consistent if
each packet in the same !ow is routed
according to either con!guration A or B.

See paper for details

Monday, November 14, 11

2-Phase Implementation

1. Instrument new con#guration with version

2. Install instrumented con#guration, leaving
all old ingress rules active

3. Activate new ingress rules

4. Wait for old version packets to leave

5. Uninstall old con#guration

24

Monday, November 14, 11

Future Work

Implementation
• Naive prototype running
• Exploring performance optimizations

Unplanned Change
• Highly responsive
• Weaker consistency

Formal Veri!cation
• Speci#cation language for path properties
• Con#guration veri#er

25

Monday, November 14, 11

Ongoing Work

26

Monday, November 14, 11

Ongoing Work

26

• This paper
Network write abstraction

Monday, November 14, 11

Ongoing Work

26

• This paper
Network write abstraction

• PRESTO ’10, ICFP ’11
Network read abstraction

Monday, November 14, 11

Ongoing Work

26

• This paper
Network write abstraction

• PRESTO ’10, ICFP ’11
Network read abstraction

• POPL ’12

Monday, November 14, 11

Ongoing Work

26

• This paper
Network write abstraction

• PRESTO ’10, ICFP ’11
Network read abstraction

• POPL ’12
Rich policy abstraction

Monday, November 14, 11

Questions?

27

http://frenetic-lang.org

Thank You

Monday, November 14, 11

http://frenetic-lang.org
http://frenetic-lang.org

Database Analogy

28

Network Database

Fully routed packet Read Transaction
Single hop routed packet Read

Network update Write Transaction
Single switch update Write

Per-Packet Consistency Snapshot Isolation

Monday, November 14, 11

