Formal Reasoning in Software-defined Networks

Mark Reitblatt
Cornell University
reitblatt@cs.cornell.edu

February 24, 2014

Abstract

I propose an approach to the verification of network systems using high-level languages. I reduce the problem
of end-to-end verification to three different steps: verifying that the source program has the desired property, using
a compiler and runtime to generate network configurations that are provably equivalent to the source program, and
using abstractions that guarantee the preservation of properties when moving between different configurations. In
this document, I outline work that has been carried out on the latter two steps, and detail a plan for building a tool to
directly verify source programs written in a high-level language.

Introduction

Software-defined networking (SDN) is a clean-slate networking architecture that replaces the messy world of dis-
tributed network control protocols and proprietary interfaces with a centralized control abstraction built on an open
protocol. Network programming languages (e.g. Frenetic [Foster et al., 2011]], PANE [Ferguson et al., 2013|], Maple
[Voellmy et al., 2013|], and NetKAT [Anderson et al., 2014]), in turn simplify the task of SDN programming by pro-
viding programmers with intuitive, high-level abstractions on top of the raw SDN control primitives. However, by
interposing software layers between the programmer and the underlying hardware, these languages can complicate the
task of reasoning about the end-to-end behavior of the actual system.

My thesis will show how to reason about SDN systems built with high-level network programming languages, and
gain full behavioral guarantees about the resulting system. I reduce the problem of reasoning about network programs
to 3 steps:

1. Verifying the source program has the desired property

2. Using a verified language compiler and runtime that provably converts source programs into equivalent network
configurations

3. Using update abstractions that preserve invariants when transitioning between network configurations

In this document, I will describe my prior work on (2) and (3), and conclude by outlining a plan to build a
verification tool for the NetKAT language, solving (1).

Example

To illustrate the challenges of end-to-end reasoning in SDN systems built with network programming languages,
consider an example network with one ingress switch I and three “filtering” switches F}, Fs, and F3, each sitting
between I and the rest of the Internet, as shown on the left side of Figure E} Several classes of traffic are connected to
I: untrustworthy packets from Unknown and Guest hosts, and trustworthy packets from Student and Faculty hosts. At
all times, the network should enforce a security policy that denies SSH traffic from untrustworthy hosts, but allows all

mailto:reitblatt@cs.cornell.edu

Configuration I Configuration IT

Type| Action Type| Action
I |U, G|Forward F4 I | U |Forward Fy
S |Forward F> G |Forward F>
F|Forward F5 |==y S, F'|Forward F'3
F1| SSH | Monitor F1| SSH | Monitor
* Allow * Allow
Fol| =* Allow F5| SSH| Monitor
* Allow
F3| = Allow F3| = Allow

Figure 1: Access control example.

other traffic to pass through the network unmodified. We assume that any of the filtering switches have the capability
to perform the requisite monitoring, blocking, and forwarding.

There are several ways to implement this policy, and depending on the traffic load, one may be better than another.
Suppose that initially we configure the switches as shown in the leftmost table in Figure[I} switch I sends traffic from
U and G hosts to F7, from S hosts to F», and from F hosts to F3. Switch F} monitors (and denies) SSH packets and
allows all other packets to pass through, while F> and F3 simply let all packets pass through.

Now, suppose the load shifts, and we need more resources to monitor the untrustworthy traffic. We might reconfig-
ure the network as shown in the table on the right of Figure[I] where the task of monitoring traffic from untrustworthy
hosts is divided between I} and F5, and all traffic from trustworthy hosts is forwarded to Fj.

Now, suppose that we have built an SDN program that implements this policy, exactly as outlined above. But, after
traffic load shifts and the network is reconfigured, we get a security alert from an internal server that our access policy
was violated and a guest host sent unauthorized traffic through the network.

If the program was written directly in OpenFlow (the leading SDN configuration protocol), the programmer could
carefully inspect their program and, after great effort, discover the bug in the progranﬂ But, if the program was
written in a network programming language, the bug could come from any one of four places:

e The source network program

The compiler incorrectly generating ruletables from the source program

The runtime incorrectly installing ruletables in the network configuration
e The runtime incorrectly transitioning between network configurations

Only one of these four is directly under the control of the programmer. Worse, if the code the programmer actually
writes is abstract and removed from the underlying implementation (as it should in a good language!), it can be difficult
to connect the observed behaviors with the original program while debugging.

Verified Compilation

This section describes an approach that rules out the possibility of the compiler incorrectly generating ruletables, and
the runtime incorrectly installing them in the network. By building a formal model of OpenFlow and the network pro-
gramming language, we can build verified compilers and runtimes that provably correctly implement source programs
in the network.

Concretely, I have developed a verified SDN runtime in the Coq proof assistant and proved it correct against a
formal specification and a detailed operational model of OpenFlow. With this runtime, programmers specify the
behavior of the network using the NetCore programming language [Monsanto et al., 2012], which abstracts away
from the details of the underlying switch hardware and distributed system, and allows programmers to reason in terms
of simple hop-by-hop packet-processing steps. The NetCore compiler and run-time system translates programs written
in this language down to low-level packet-processing rules. Because its behavior is verified in Coq, we establish the
correctness of our runtime once and for all, obviating the need for run-time or post hoc verification.

I'This, of course, assumes that the erroneous behavior is not due to a bug in the hardware, or the operating system the program is running on.

s o TED Frl
oo YT wrrm|
dIDst = H1 and not(dITyp = 0x800) = {|1]}

NetCore Language

Verified NetCore Compiler Theorem. (Compiler soundness)

—

attern [Action |
>attern [Action
v [Pattern Action
5 | {dIDst = u1, dITyp = 0x800} | {I}
{dIDst = H1} {1y
3|«

Flow Tables

Verified Run-time System Theorem. (Weak bisimulation)

¢—

1
)
Lu Add 5 {dIDst = i1 dITyp = 0x800} {|}]

Featherweight OpenFlow

Verified in Coq
Written in OCaml

Implementation

OpenFlow bindings
Figure 2: System architecture.

Architecturally, the system is organized as a verified software stack that translates through the following levels of
abstraction, depicted in Figure

e NetCore. The highest level of abstraction is the NetCore language, proposed in prior work by Monsanto et
al. [Monsanto et al., 2012]. NetCore is a declarative language that allows programmers to describe what net-
work behavior they want, without specifying how it should be implemented. It offers a collection of intuitive
constructs for matching, filtering, and transforming packets, as well as natural logical operators for combining
smaller programs into bigger ones such as union and domain restriction. Although NetCore programs are ulti-
mately executed in a distributed system—the network—they have a simple semantics that models their behavior
as functions from packets to packets.

o Flow tables. The intermediate level of abstraction is flow fables, a representation that sits between NetCore
programs and switch-level configurations. There are two main differences between NetCore programs and
flow tables. First, NetCore programs describe the forwarding behavior of a whole network, while flow tables
describe the behavior of a single switch. Second, flow tables process packets using a linear scan through a
list of prioritized rules. Hence, to translate operators such as union and negation, the NetCore compiler must
generate a sequence of rules that encodes the same semantics. However, because flow table matching uses a
lower-level packet representation (as nested frames of Ethernet, IP, TCP, etc. packets), flow tables must satisfy
a well-formedness condition to rule out invalid patterns that are inconsistent with this representation.

e Featherweight OpenFlow. The lowest level of abstraction is Featherweight OpenFlow, a new foundational
model we have designed that captures the essential features of SDNs. Featherweight OpenFlow models switches,
the runtime, the network topology, as well as their internal transitions and interactions in a small-step operational
semantics. This semantics is non-deterministic, modeling the asynchrony inherent in networks. To implement
a flow table in a Featherweight OpenFlow network, the runtime instructs switches to install or uninstall rules
as appropriate while dealing with two important issues: First, switches process instructions concurrently with
packets flowing through the network, so it must ensure that at all times the rules installed on switches are

consistent with the flow table. Second, switches are allowed to buffer instructions and apply them in any order,
so it must ensure that the behavior is correct no matter how instructions are reordered through careful use of
synchronization primitives.

Using this Coq development, we prove two theorems:

Theorem 1 (Compiler Soundness) For all NetCore programs pg, switches sw, [Compile(sw, pg)] = [pg] sw.

This theorem states that the flowtable of the compiled NetCore program pg at an arbitrary switch sw has precisely
the same denotation (semantics) as pg at that same switch. This is the strongest equivalence possible (equality) between
a source program and its compiled form.

We also built a FeatherWeight OpenFlow runtime that takes flowtables and installs them into the network. The
correctness theorem for this runtime is:

Theorem 2 (Runtime System Correctness) The NetCore runtime is weakly bisimilar to the semantics of the source
flowtable.

A bisimulation between two systems says that they have identical traces, i.e. no external observer is able to
distinguish between them by looking at their observable events. The “weakness” of the bisimulation is a technical
detail, arising from the fact tha FeatherWeight OpenFlow models OpenFlow in great detail, including such elements
as buffers. Weakly bisimilar systems are also indistinguishable by observable events.

Taken together, these two theorems state that when a NetCore program is compiled and run using this system, the
resulting OpenFlow network behaves exactly like the original program.

This was joint work with Arjun Guha and Nate Foster, and is described in full detail in [|Guha et al., 2013].

Network Transitions

The approach outlined in the previous section ensures that a single network program is correctly installed in the
network. But what happens in a dynamic network, where policies change over time, and the network configuration
must change with them?

Returning to the example, consider what happens when the switches are updated to the new configuration after
re-balancing. Because we cannot update the network all at once, the individual switches need to be reconfigured one-
by-one. However, if we are not careful, making incremental updates to the individual switches can lead to intermediate
configurations that violate the intended security policy. For instance, if we start by updating F5 to deny SSH traffic,
we interfere with traffic sent by trustworthy hosts. If, on the other hand, we start by updating switch [to forward
traffic according to the new configuration (sending U traffic to F}, G traffic to F5, and .S and F’ traffic to F3), then
SSH packets from untrustworthy hosts will incorrectly be allowed to pass through the network. There is one valid
transition plan:

1. Update I to forward S traffic to F3, while continuing to forward U and G traffic to F; and F traffic to F3.
2. Wait until in-flight packets have been processed by Fb.

3. Update F5 to deny SSH packets.

4. Update I to forward G traffic to F5, while continuing to forward U traffic to £} and .S and F traffic to F3.

In general, finding a transition plan that preserves a given property is difficult, and that assumes that the program-
mer provided the correctness property to the underlying runtime!

Instead, this section describes a technique (per-packet consistent updates) for guaranteeing that whenever the old
and the new configurations satisfy a (correctness) property, the network satisfies the property during the transition.

Per-packet consistency guarantees that each packet flowing through the network will be processed according to
a single network configuration—either the old configuration prior to the update, or the new one after the update, but
not a mixture of the two. In the example in Figure[I] per-packet consistency rules out situations in which a packet is
processed by the new configuration on ingress switch S and the old configuration on the filtering switch Fb, thereby
circumventing the access control policy.

Configuration IT Configuration III
P T |V Action | T |V Action
] S|1,2 SetV 1, Forward 1 | S |1,2 SetV 2, Forward F Configuration IV
v g ""fi?“ra"‘m ;Cﬁon 3.4 SetV 1,Forward Fa| |3,4 SetV 2, Forward Fs PT T [V Action
SR SetV I, Forward F, 5,6 SetV 1, Fo'rward Fs3 5,6 SetV 2, Fo‘rward Fs|| S|1,2 SetV 2, Forward F}
3: 1 SetV 1: Forward F F A, B|1 Monitor F A, B|1 Monitor 3,4 SetV 2, Forward F»
56 SetV 1. Forward T b 1 Allqw — 1 Allt?w — 5,6 SetV 2, Fonard F3
) 15 Monitor A,B|2 Monitor A,B|2 Monitor Fy A,B|2 Monitor
’ Allow 2 Allow 2 Allow 2 Allow
Yo Allow Fy 1 Allqw Fy 1 Allow Fy A,B|2 Monitor
i ATl A, B|2 Monitor A,B|2 Monitor 2 Allow
3 ow 2 Allow 2 Allow s 2 Allow
F3 1 Allow F3 1 Allow
2 Allow 2 Allow

Figure 3: Configurations for per-packet consistent update example. The V column matches on version number.

To implement per-packet consistency, we propose a simple mechanism that stamps packets with their configuration
version at ingress switches and tests for the version number in all other rules. This can be implemented in OpenFlow
using a header field to encode version numbers (e.g., VLAN tags or MPLS labels). To update to a new configuration,
the runtime first pre-processes the rules in the new configuration, augmenting the pattern of each rule to match the
new version number in the header. Next, it installs these rules on all of the switches, leaving the rules for the old
configuration (whose rules match the previous version number) in place. At this point, every switch can process
packets with either the old or new policy, depending on the version number on the packet.

The runtime then starts updating the ingress switches, replacing their old rules with new rules that stamp incoming
packets with the new version number. Because the ingress switches cannot all be updated atomically, packets entering
the network are processed with a mixture of the old and new policies for a time, but any individual packet is handled by
just one policy throughout the network. Finally, once all packets following the “old” policy have left the network, the
runtime deletes the old configuration rules from all switches, completing the updateE] Figure shows the intermediate
configurations generated by this approach. Note that in going from one configuration to the next, the individual
switches can be updated in any order.

We argued that a per-packet consistent update would enforce the access control policy in our example, but, in
general, how can developers know if their invariants will be preserved? Formally, per-packet consistent updates
preserve all path properties. A path property captures behaviors that can be expressed in terms of packets p and the
list of links the packet traverses as it is forwarded through the network. Many useful properties can be expressed as
path properties including basic connectivity, loop-freeness, and security properties such as “all packets from host A
must be dropped” or “all Web traffic must waypoint via middlebox m.” When using a per-packet consistent update,
the programmer is guaranteed that if a path property P is true of all valid packet-path pairs in both the initial and final
configurations, it will be true of all paths taken by any packet at run time before, during, and after the update. In other
words, per-packet consistent update preserves all path properties.

With this property preservation, a programmer can be sure that any errors seen in the network during an update do
not arise from the update itself. The work described in this section was joint work with Nate Foster, Jennifer Rexford,
Cole Schlesinger, and David Walker, and is described in full detail in [Reitblatt et al., 2011]].

NetKAT Verifier

Taken together, the techniques of the previous sections ensure that the network correctly implements the source net-
work program. Therefore, any bugs in the network must reflect bugs in the actual program. This section outlines a
proposal to build a network programming language verification tool that can decide whether source programs satisfy
a given specification.

2The runtime can safely delete the old rules after some maximum transmission delay (i.e., the sum of propagation and queuing delay, maximized
over all paths) has elapsed. Since our mechanisms never introduce loops, we do not need to account for increases in delay due to transient
forwarding loops. In practice, the runtime can be quite conservative in estimating the delays and simply wait for several seconds (or even minutes)
before removing the old rules.

Concretely, I propose to build a verification engine for the NetKAT programming language ([Anderson et al., 2014]).
This tool will take a source program, written in NetKAT, and a correctness specification, written in the Pathetic lan-
guageﬂ and decide if the source program satisfies the specification.

The precise semantics for both languages can be found in their respective papers, but they are both based upon reg-
ular expressions, and have a denotational semantics given by a function from packets to paths traversing the network.
Using this denotational semantics, one can view a Pathetic formula ¢ as specifying the legal set of paths for a packet
to take across the network, and a NetKAT program P as assigning packets to specific paths. Thus, verifying that P
satisfies ¢ amounts to checking that every path in P is “legal”, i.e. in ¢.

Because the language have regular expression based interpretations, we can use the fact that any regular expression
can be represented by an automaton to perform verification. Viewed this way, an automaton, corresponding to a specific
NetKAT program P or Pathetic formula ¢, accepts as a language precisely the paths given by the denotation of P or
¢. Therefore, checking that every path in P is in ¢ (i.e. that P satisfies specification ¢) is the same as checking that
the language of the automaton Ap (the automaton representing P) is a subset of the language of the automaton A
(the automaton representing ¢).

Conveniently, the NetKAT compiler already needs to construct an automaton A p for the source program P as part
of its internal stages. The plan is to use this automata representation to perform model checking. Concretely, to verify
that program P has property ¢, the verifier will first negate ¢ and construct an automaton A, equivalent to —¢. It
will then construct the product automaton Ap x A-4 of Ap and A4, and check that the language of this automaton
is empty. Recalling automata theory, the language of the product automaton of Ap and A4 is the intersection of the
languages of A, and A_,. Therefore, if the language of Ap x A_4 is empty, it means that every path in P is not in
-, i.e. every path in P is in ¢ (i.e. is legal).

This general approach of automata-theoretic verification was introduced by [Vardi and Wolper, 1986], and has
been tremendously successful in domains ranging from concurrent systems to low-level systems code to hardware
designs to automotive control software.

References

[Anderson et al., 2014] Anderson, C. J., Foster, N., Guha, A., Jeannin, J.-B., Kozen, D., Schlesinger, C., and Walker,
D. (2014). NetKAT: Semantic foundations for networks. In POPL.

[Ferguson et al., 2013] Ferguson, A. D., Guha, A., Liang, C., Fonseca, R., and Krishnamurthi, S. (2013). Participatory
Networking: An API for application control of SDNs. In SIGCOMM.

[Foster et al., 2011] Foster, N., Harrison, R., Freedman, M. J., Monsanto, C., Rexford, J., Story, A., and Walker, D.
(2011). Frenetic: A network programming language. In /ICFP.

[Guha et al., 2013] Guha, A., Reitblatt, M., and Foster, N. (2013). Machine-Verified Network Controllers . In ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI), Seattle, WA.

[Monsanto et al., 2012] Monsanto, C., Foster, N., Harrison, R., and Walker, D. (2012). A compiler and run-time
system for network programming languages. In POPL.

[Reitblatt et al., 2013] Reitblatt, M., Canini, M., Foster, N., and Guha, A. (2013). Fattire: Declarative fault tolerance
for software defined networks. In ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking
(HotSDN), Hong Kong, HK.

[Reitblatt et al., 2011] Reitblatt, M., Foster, N., Rexford, J., and Walker, D. (2011). Consistent updates for software-
defined networks: Change you can believe in! In HotNets.

[Vardi and Wolper, 1986] Vardi, M. Y. and Wolper, P. (1986). An automata-theoretic approach to automatic program
verification. In Proceedings of the First Symposium on Logic in Computer Science. IEEE Computer Society.

3Pathetic is exactly the FatTire language from [[Reitblatt et al., 2013||, minus the fault tolerance annotations

[Voellmy et al., 2013] Voellmy, A., Wang, J., Yang, Y. R., Ford, B., and Hudak, P. (2013). Maple: Simplifying SDN
programming using algorithmic policies. In SIGCOMM.

