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Project History
• Jeff Kodosky started playing around in 2004 with the idea of verifying 

a LabVIEW program

• Warren Hunt and J Moore met on occasion with Jeff and Jacob 
Kornerup over a couple of years, culminating with NI engaging Grant 
as an intern in 2005

• Summer 2007:  Alternate approach developed with Matt Kaufmann 
models LabVIEW programs, including loop structures, directly as 
ACL2 functions. At the end of the summer Grant Passmore left for 
Edinburgh and transferred his work to the author

• Current: Matt continued contracting, approach has been fully 
automated, expanded and used to verify a dozen examples
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LabVIEW (in brief)
• Graphical dataflow language (G) with control structures

• Shift register memory elements

• Separate Front (user interface) and Back (implementation) panels
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LabVIEW For-Loops
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ACL2

• Programming Language

• Formal Logic

• Automated Theorem Prover
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ACL2 The Language
• Subset of Lisp

• S-Expressions

• Untyped 

• First Order

• Applicative

• Purely functional

• Total

• All functions 
defined on all 
inputs

• I.E. everything 
terminates
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ACL2 Syntax
• S-Expressions

• Primary syntax is () 

• Prefix notation

• (f x) instead of f(x)

• Predicates end in a -p by convention

• Use defun to define a function
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ACL2 (cont.)
(defun fib (i)
(if (or (zp i) (= i 1))

1
(+ (fib (- i 1))

 (fib (- i 2)))))

• (zp x) returns false if x is a natural number 
and x > 0

• Note that zp recognizes all non-integers
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ACL2 The Logic

• Definitional Principle
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ACL2 The Logic

• Definitional Principle

• Use defthm to name, define and prove a 
new theorem
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ACL2 The Logic

• Definitional Principle

• Use defthm to name, define and prove a 
new theorem

• Theorems are stored as rules (usually 
rewrite)
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ACL2 The Logic (cont.)

(defthm fib-is-bigger-than-n 
  (implies (integerp n)

  (>= (fib n) n)))

• integerp recognizes integers

• fib is defined on every ACL2 object

• But fib(n) >= n is not true for all objs.
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ACL2 The Theorem 
Prover

• ACL2 proves theorems with existing 
theorems and function definitions

• User guides the process with hints and 
theory control

• A theory is a list of enabled rules and 
definitions
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ACL2 The Thm. Prover
ACL2 !>(defthm fib-is-bigger-than-n 
  (implies (integerp n)
  (>= (fib n) n)))

([ A key checkpoint:

Goal'
(IMPLIES (INTEGERP N) (<= N (FIB N)))

*1 (Goal') is pushed for proof by induction.

])

Perhaps we can prove *1 by induction.  One induction 
scheme is suggested
by this conjecture.  

We will induct according to a scheme suggested by (FIB 
N).  This suggestion
was produced using the :induction rule FIB.  If we let 
(:P N) denote
*1 above then the induction scheme we'll use is
(AND (IMPLIES (AND (NOT (OR (ZP N) (= N 1)))
                   (:P (+ -1 N))
                   (:P (+ -2 N)))
              (:P N))
     (IMPLIES (OR (ZP N) (= N 1)) (:P N))).
This induction is justified by the same argument used 
to admit FIB.

When applied to the goal at hand the above induction 
scheme produces
five nontautological subgoals.

*1 is COMPLETED!
Thus key checkpoint Goal' is COMPLETED!

Q.E.D.

Summary
Form:  ( DEFTHM FIB-IS-BIGGER-THAN-N ...)
Rules: ((:COMPOUND-RECOGNIZER ZP-COMPOUND-RECOGNIZER)
        (:DEFINITION =)
        (:DEFINITION FIB)
        (:DEFINITION NOT)
        (:EXECUTABLE-COUNTERPART <)
        (:EXECUTABLE-COUNTERPART FIB)
        (:EXECUTABLE-COUNTERPART INTEGERP)
        (:EXECUTABLE-COUNTERPART NOT)
        (:FAKE-RUNE-FOR-LINEAR NIL)
        (:FAKE-RUNE-FOR-TYPE-SET NIL)
        (:INDUCTION FIB)
        (:TYPE-PRESCRIPTION FIB))
Warnings:  None
Time:  0.01 seconds (prove: 0.00, print: 0.00, other: 
0.00)
 FIB-IS-BIGGER-THAN-N
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Formal Verification

• Application of formal methods for 
correctness proofs of SW/HW

• Uses formal specifications of behavior

• Utilizes theorem provers and decision 
procedures to complete proofs
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Problem at Hand

• We desire to verify LabVIEW/G diagrams

• LabVIEW/G lacks an assertion primitive

• LabVIEW/G lacks a formal semantics
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Solution
• Add assertion block to LabVIEW/G
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Solution
• Add assertion block to LabVIEW/G

• Construct semantics for LabVIEW/G in 
ACL2

• Convert assertions into ACL2 proof 
obligations

• Use LabVIEW semantics for semantics of 
assertions
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Our Approach
• “assertion” blocks are written in 

LabVIEW/G

• This allows simulation, validation
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Translation

GCompiler Translator ACL2Diagram

Written in LabVIEW/G

Written in ACL2
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Our Approach (cont.)
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Our Approach (cont.)

• Translate LabVIEW/G diagrams into ACL2 
functions (shallow embedding)
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Our Approach (cont.)

• Translate LabVIEW/G diagrams into ACL2 
functions (shallow embedding)

• 1-1 correspondence between function 
nodes,wires and ACL2 functions
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Naming
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Naming
• LabVIEW/G doesn’t allow naming of (most) 

nodes

• Human readability is essential to 
understanding proofs

• Auto-naming of nodes based on type
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Naming (cont.)
• Fn nodes are named as fntype-number
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22Monday, April 27, 2009



Naming (cont.)
• Fn nodes are named as fntype-number

• ADD-1

• Constant nodes are named by value

22Monday, April 27, 2009



Naming (cont.)
• Fn nodes are named as fntype-number

• ADD-1

• Constant nodes are named by value

• CONSTANT[0]-2

22Monday, April 27, 2009



Naming (cont.)
• Fn nodes are named as fntype-number

• ADD-1

• Constant nodes are named by value

• CONSTANT[0]-2

• Third instance of the constant ‘0’
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Naming (cont.)
• Wires are named a little differently

• Because it’s dataflow, each wire retrieves 
one terminal from one node

• Wire named after its source

CONSTANT[0]-2<_T_0>
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Naming (cont.)
• Diagram inputs are named by label

• Diagram structures are also named by label

• Function terminals are named by LabVIEW 
term-name field

• Output terminal of assertion diagrams is 
named :ASN
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ACL2 Model

• Nodes have input and output terminals 
(wire ports)

• Each node takes a record (IN) as input

• Returns output record

• Wires extract values from records
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Translation
(DEFUN-N CONSTANT[0]-0 (IN)
         (S* :|_T_0| 0))

(DEFUN-W CONSTANT[0]-0<_T_0> (IN)
         (G :|_T_0| (CONSTANT[0]-0 IN)))

(DEFUN-N INCREMENT-0 (IN)
     (S* :X+1 (1+ (CONSTANT[0]-0<_T_0> 

         IN))))
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Translation
(DEFUN-N CONSTANT[0]-0 (IN)
         (S* :|_T_0| 0))
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• (S* :key1 val1 :key2 val2 ...) creates new 
record binding :keyi to vali (“set”)
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Translation
(DEFUN-N CONSTANT[0]-0 (IN)
         (S* :|_T_0| 0))

(DEFUN-W CONSTANT[0]-0<_T_0> (IN)
         (G :|_T_0| (CONSTANT[0]-0 IN)))

(DEFUN-N INCREMENT-0 (IN)
     (S* :X+1 (1+ (CONSTANT[0]-0<_T_0> 

         IN))))

• (S* :key1 val1 :key2 val2 ...) creates new 
record binding :keyi to vali (“set”)

• (G :key rec) returns the value associated 
with :key in rec (“get”)
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Our Approach (cont.) 
• Translate assertions into proof obligations

(DEFTHM ASSERTION-BLOCK-HOLDS
        (IMPLIES (AND (NATP (G :NUMBER IN)))
                 (G :ASN (ASSERTION-BLOCK IN))))
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Caveats
• We use unbounded arithmetic, so this is a 

theorem for us, but not for LabVIEW/G

• We view this as verifying a slightly 
“idealized” form of LabVIEW/G

28Monday, April 27, 2009



LabVIEW Loops
• We separate for-loop structures into 4 

ACL2 functions

• $step function

• Executes loop body and binds outputs to 
next iteration inputs

(DEFUN FOR-LOOP$STEP (IN) 
(S :|_T_4| (G :|_T_1| (|_N_5| IN)) IN))
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LabVIEW Loops (cont.)
• $loop function

• Compares loop counter to loop bound

• Updates loop counter and calls $step fn
(DEFUN FOR-LOOP$LOOP (N IN) 
(DECLARE (XARGS :MEASURE (NFIX (- N (G :LC IN))))) 
(COND ((OR (>= (G :LC IN) N) 

(NOT (NATP N)) 
(NOT (NATP (G :LC IN)))) 

IN) 
(T (FOR-LOOP$LOOP N (S :LC (1+ (G :LC IN)) 

(FOR-LOOP$STEP IN))))))

30Monday, April 27, 2009



LabVIEW Loops (cont.)
• $init function

• Binds loop variables to initial values

(DEFUN FOR-LOOP$LOOP$INIT (IN) 
(S* :LC 0 

:|_T_2| (CONSTANT[10]-1<_T_0> IN) 
:|_T_4| (CONSTANT[0]-0<_T_0> IN)))
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LabVIEW Loops (cont.)
• Top function

• Binds loop bound and calls $loop fn with 
results of $init fn

(DEFUN-N FOR-LOOP (IN) 
(FOR-LOOP-SRN$LOOP (CONSTANT[10]-1<_T_0> IN) 

(FOR-LOOP-SRN$LOOP$INIT IN))) 
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LabVIEW Structures
• LabVIEW loops are split into inner and 

outer structures

• Inner structures are called “Self-reference 
Nodes” (SRN)

• SRN nodes contain the body of the loop

• Outer nodes map external values to 
internal names
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Top Loop Assertions
• Assertions about loops (in general) require 

inductive proofs

• We split loop assertions into “top” 
assertions and loop invariants
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Loop Assertions (cont.)
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Loop Invariant
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Top Loop Assertion

37Monday, April 27, 2009



Proving Loop 
Assertions

• Hold the user’s hand to prove invariants

• Autogenerate highly structured proof 
scaffolding

• Strictly guide proof process by way of 
theory control
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Proof Scaffolding
• Generate 13 lemmas, 6 predicates

• 4 lemmas potentially require user 
assistance

• All other lemmas (should) be automatic

• Generated file has ~50 lines of comments

• User assisted lemmas are marked
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Generic Theory
• We use a generic theory to avoid induction 

in the invariant proof

• Use encapsulate to define a generic 
$step, $loop

• Prove that if $prop holds on entry to 
$loop and is preserved by $step then it 
holds when $loop is run

40Monday, April 27, 2009



Example Diagram
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Example Diagram
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Our Goal

(DEFTHM ACL2-TOP-ASN$INV
  (IMPLIES (GAUSS$INPUT-HYPS IN)
           (G :ASN (ACL2-TOP-ASN IN))))
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Our Goal

• But we can’t prove this immediately

(DEFTHM ACL2-TOP-ASN$INV
  (IMPLIES (GAUSS$INPUT-HYPS IN)
           (G :ASN (ACL2-TOP-ASN IN))))
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Extend Loop Invariant
(DEFUN LOOP-INV-SRN$PROP (N IN)
  (DECLARE (IGNORABLE N))
  (AND (LOOP-INV-SRN$HYPS IN)
       (EQUAL N (G :|_T_2| IN))
       (G :ASN (ACL2-LOOP-INV IN))))

• LOOP-INV-SRN$HYPS is a type predicate that recognizes the 
types on the inputs to LOOP-INV-SRN

• ACL2-LOOP-INV is the name of the loop invariant
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Loop Inv. is Preserved
(DEFTHMDL LOOP-INV-SRN$PROP{FOR-LOOP-SRN$STEP}
  (IMPLIES (AND (NATP (G :LC IN))
                (< (G :LC IN) N)
                (LOOP-INV-SRN$PROP N IN))
           (LOOP-INV-SRN$PROP N
            (S :LC (1+ (G :LC IN))
               (FOR-LOOP-SRN$STEP IN)))))

• Defthmdl is a macro for (local (defthmd foo ...))
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Use Generic Theory
(DEFTHML LOOP-INV-SRN$PROP{FOR-LOOP-SRN}
  (IMPLIES (AND (NATP N)
                (NATP (G :LC IN))
                (LOOP-INV-SRN$PROP N IN))
           (LOOP-INV-SRN$PROP N (FOR-LOOP-SRN$LOOP N IN)))
  :HINTS
  (("Goal" :BY (:FUNCTIONAL-INSTANCE
                LOOP-GENERIC-THM
                (STEP-GENERIC FOR-LOOP-SRN$STEP)
                (PROP-GENERIC LOOP-INV-SRN$PROP)
                (LOOP-GENERIC FOR-LOOP-SRN$LOOP))
           :IN-THEORY
           (UNION-THEORIES '(LOOP-INV-SRN$PROP{FOR-LOOP-SRN$STEP})
                           (THEORY 'MINIMAL-THEORY))
           :EXPAND ((|FOR-LOOP-SRN$LOOP| N IN))))
  :RULE-CLASSES NIL)
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Inv Holds on Input, with 
type hyps

(DEFTHML ACL2-LOOP-INV$INV{INIT}
  (IMPLIES (ACL2-LOOP-INV$INV{PRE} IN)
           (LOOP-INV-SRN$PROP (ARRAY-SIZE-0<SIZE(S)> IN)
            (LOOP-INV-SRN$PROP$INIT IN)))
  :RULE-CLASSES NIL)
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Loop Inv. Holds w/o 
type hyps

(DEFTHML ACL2-LOOP-INV$INV
  (IMPLIES (ZERO-ARRAY$INPUT-HYPS IN)
           (ACL2-LOOP-INV$INV+ IN))
  :HINTS
  (("Goal"
    :IN-THEORY
    (UNION-THEORIES '(ACL2-LOOP-INV$INV{PRE})
                    (THEORY 'MINIMAL-THEORY))
    :USE (ACL2-LOOP-INV$INV$CONDITIONAL
          ACL2-LOOP-INV$INV{PRE}{HOLDS})))
  :RULE-CLASSES NIL)

48Monday, April 27, 2009



Loop counter = Loop 
bound

(DEFTHML LC$FOR-LOOP-SRN
  (IMPLIES (AND (NATP N)
                (NATP (G :LC IN))
                (<= (G :LC IN) N))
           (EQUAL (G :LC (FOR-LOOP-SRN$LOOP N IN)) N))
  :HINTS (("Goal" :BY (:FUNCTIONAL-INSTANCE 
                       LOOP-GENERIC-LC
                       (STEP-GENERIC FOR-LOOP-SRN$STEP)
                       (PROP-GENERIC LOOP-INV-SRN$PROP)
                       (LOOP-GENERIC FOR-LOOP-SRN$LOOP))
           :IN-THEORY (THEORY 'MINIMAL-THEORY)
           :EXPAND ((FOR-LOOP-SRN$LOOP N IN)))))
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Top Inv. Holds

• Uses several small lemmas not shown here

(DEFTHM ACL2-TOP-ASN$INV
  (IMPLIES (GAUSS$INPUT-HYPS IN)
           (G :ASN (ACL2-TOP-ASN IN)))
  :HINTS (("Goal" :IN-THEORY (DISABLE |FOR-LOOP-SRN$LOOP|)
           :USE (ACL2-LOOP-INV$INV
                 LEMMA-2-ACL2-LOOP))))
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Lemma Library

• Lemmas about LabVIEW primitives 
essential to automatic proofs

• Primitive definitions are disabled by default 
to (weakly) remove dependence upon 
defintions

• Currently ~80 theorems 
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Not Shown Here

• LabVIEW/G diagrams can use ACL2 
functions for specifications

• Existential ghost variables for specifications

• Pick-a-point strategies

• By-hand approach to compositionality
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Future Work
• Compositional Verification

• Initial Approach done by hand

• Use encapsulate to export diagram 
properties

• Use bounded arithmetic

• Use encapsulate for primitive definitions

• Diagrams containing state
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Conclusion

• Prototype system for verifying LabVIEW 
diagrams

• About a dozen (fully automatic) examples 
completed

• Feasibility of approach has been proven (for 
state-free diagrams)
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