
Mark Reitblatt

Dept. of Computer Sciences, University of Texas
National Instruments, Inc.

Formal Verification of
LabVIEW Diagrams

1Monday, April 27, 2009

Outline

• LabVIEW Overview

• ACL2 Overview

• Overview of approach

• Walk through example verification

• Conclusion

2Monday, April 27, 2009

Project History
• Jeff Kodosky started playing around in 2004 with the idea of verifying

a LabVIEW program

• Warren Hunt and J Moore met on occasion with Jeff and Jacob
Kornerup over a couple of years, culminating with NI engaging Grant
as an intern in 2005

• Summer 2007: Alternate approach developed with Matt Kaufmann
models LabVIEW programs, including loop structures, directly as
ACL2 functions. At the end of the summer Grant Passmore left for
Edinburgh and transferred his work to the author

• Current: Matt continued contracting, approach has been fully
automated, expanded and used to verify a dozen examples

3Monday, April 27, 2009

Credit

• To reiterate

4Monday, April 27, 2009

Credit

• To reiterate

• Joint work with Matt Kaufmann

4Monday, April 27, 2009

Credit

• To reiterate

• Joint work with Matt Kaufmann

• Building off work with Matt and Grant

4Monday, April 27, 2009

Credit

• To reiterate

• Joint work with Matt Kaufmann

• Building off work with Matt and Grant

• Project fully funded by National
Instruments, Inc.

4Monday, April 27, 2009

LabVIEW (in brief)
• Graphical dataflow language (G) with control structures

• Shift register memory elements

• Separate Front (user interface) and Back (implementation) panels

5Monday, April 27, 2009

LabVIEW For-Loops

6Monday, April 27, 2009

LabVIEW For-Loops
loop bound

6Monday, April 27, 2009

LabVIEW For-Loops
loop bound

6Monday, April 27, 2009

LabVIEW For-Loops

constant

loop bound

6Monday, April 27, 2009

LabVIEW For-Loops

constant

loop bound

6Monday, April 27, 2009

LabVIEW For-Loops

constant

loop bound

shift registers

6Monday, April 27, 2009

LabVIEW For-Loops

constant

loop bound

shift registers

6Monday, April 27, 2009

LabVIEW For-Loops

constant

loop bound

shift registers

6Monday, April 27, 2009

LabVIEW For-Loops

constant

loop bound

shift registers

loop counter

6Monday, April 27, 2009

LabVIEW For-Loops

constant

loop bound

shift registers

loop counter

6Monday, April 27, 2009

ACL2

• Programming Language

• Formal Logic

• Automated Theorem Prover

7Monday, April 27, 2009

ACL2 The Language
• Subset of Lisp

• S-Expressions

• Untyped

• First Order

• Applicative

• Purely functional

• Total

• All functions
defined on all
inputs

• I.E. everything
terminates

8Monday, April 27, 2009

ACL2 Syntax
• S-Expressions

• Primary syntax is ()

• Prefix notation

• (f x) instead of f(x)

• Predicates end in a -p by convention

• Use defun to define a function

9Monday, April 27, 2009

ACL2 (cont.)
(defun fib (i)
(if (or (zp i) (= i 1))

1
(+ (fib (- i 1))

 (fib (- i 2)))))

• (zp x) returns false if x is a natural number
and x > 0

• Note that zp recognizes all non-integers

10Monday, April 27, 2009

ACL2 The Logic

• Definitional Principle

11Monday, April 27, 2009

ACL2 The Logic

• Definitional Principle

• Use defthm to name, define and prove a
new theorem

11Monday, April 27, 2009

ACL2 The Logic

• Definitional Principle

• Use defthm to name, define and prove a
new theorem

• Theorems are stored as rules (usually
rewrite)

11Monday, April 27, 2009

ACL2 The Logic (cont.)

(defthm fib-is-bigger-than-n
 (implies (integerp n)

 (>= (fib n) n)))

• integerp recognizes integers

• fib is defined on every ACL2 object

• But fib(n) >= n is not true for all objs.

12Monday, April 27, 2009

ACL2 The Theorem
Prover

• ACL2 proves theorems with existing
theorems and function definitions

• User guides the process with hints and
theory control

• A theory is a list of enabled rules and
definitions

13Monday, April 27, 2009

ACL2 The Thm. Prover
ACL2 !>(defthm fib-is-bigger-than-n
 (implies (integerp n)
 (>= (fib n) n)))

([A key checkpoint:

Goal'
(IMPLIES (INTEGERP N) (<= N (FIB N)))

*1 (Goal') is pushed for proof by induction.

])

Perhaps we can prove *1 by induction. One induction
scheme is suggested
by this conjecture.

We will induct according to a scheme suggested by (FIB
N). This suggestion
was produced using the :induction rule FIB. If we let
(:P N) denote
*1 above then the induction scheme we'll use is
(AND (IMPLIES (AND (NOT (OR (ZP N) (= N 1)))
 (:P (+ -1 N))
 (:P (+ -2 N)))
 (:P N))
 (IMPLIES (OR (ZP N) (= N 1)) (:P N))).
This induction is justified by the same argument used
to admit FIB.

When applied to the goal at hand the above induction
scheme produces
five nontautological subgoals.

*1 is COMPLETED!
Thus key checkpoint Goal' is COMPLETED!

Q.E.D.

Summary
Form: (DEFTHM FIB-IS-BIGGER-THAN-N ...)
Rules: ((:COMPOUND-RECOGNIZER ZP-COMPOUND-RECOGNIZER)
 (:DEFINITION =)
 (:DEFINITION FIB)
 (:DEFINITION NOT)
 (:EXECUTABLE-COUNTERPART <)
 (:EXECUTABLE-COUNTERPART FIB)
 (:EXECUTABLE-COUNTERPART INTEGERP)
 (:EXECUTABLE-COUNTERPART NOT)
 (:FAKE-RUNE-FOR-LINEAR NIL)
 (:FAKE-RUNE-FOR-TYPE-SET NIL)
 (:INDUCTION FIB)
 (:TYPE-PRESCRIPTION FIB))
Warnings: None
Time: 0.01 seconds (prove: 0.00, print: 0.00, other:
0.00)
 FIB-IS-BIGGER-THAN-N

14Monday, April 27, 2009

Formal Verification

• Application of formal methods for
correctness proofs of SW/HW

• Uses formal specifications of behavior

• Utilizes theorem provers and decision
procedures to complete proofs

15Monday, April 27, 2009

Problem at Hand

• We desire to verify LabVIEW/G diagrams

• LabVIEW/G lacks an assertion primitive

• LabVIEW/G lacks a formal semantics

16Monday, April 27, 2009

Solution
• Add assertion block to LabVIEW/G

17Monday, April 27, 2009

Solution
• Add assertion block to LabVIEW/G

• Construct semantics for LabVIEW/G in
ACL2

17Monday, April 27, 2009

Solution
• Add assertion block to LabVIEW/G

• Construct semantics for LabVIEW/G in
ACL2

• Convert assertions into ACL2 proof
obligations

17Monday, April 27, 2009

Solution
• Add assertion block to LabVIEW/G

• Construct semantics for LabVIEW/G in
ACL2

• Convert assertions into ACL2 proof
obligations

• Use LabVIEW semantics for semantics of
assertions

17Monday, April 27, 2009

Our Approach
• “assertion” blocks are written in

LabVIEW/G

• This allows simulation, validation

18Monday, April 27, 2009

Translation

GCompiler Translator ACL2Diagram

Written in LabVIEW/G

Written in ACL2

19Monday, April 27, 2009

Our Approach (cont.)

20Monday, April 27, 2009

Our Approach (cont.)

• Translate LabVIEW/G diagrams into ACL2
functions (shallow embedding)

20Monday, April 27, 2009

Our Approach (cont.)

• Translate LabVIEW/G diagrams into ACL2
functions (shallow embedding)

• 1-1 correspondence between function
nodes,wires and ACL2 functions

20Monday, April 27, 2009

Naming

21Monday, April 27, 2009

Naming
• LabVIEW/G doesn’t allow naming of (most)

nodes

21Monday, April 27, 2009

Naming
• LabVIEW/G doesn’t allow naming of (most)

nodes

• Human readability is essential to
understanding proofs

21Monday, April 27, 2009

Naming
• LabVIEW/G doesn’t allow naming of (most)

nodes

• Human readability is essential to
understanding proofs

• Auto-naming of nodes based on type

21Monday, April 27, 2009

Naming (cont.)
• Fn nodes are named as fntype-number

22Monday, April 27, 2009

Naming (cont.)
• Fn nodes are named as fntype-number

• ADD-1

22Monday, April 27, 2009

Naming (cont.)
• Fn nodes are named as fntype-number

• ADD-1

• Constant nodes are named by value

22Monday, April 27, 2009

Naming (cont.)
• Fn nodes are named as fntype-number

• ADD-1

• Constant nodes are named by value

• CONSTANT[0]-2

22Monday, April 27, 2009

Naming (cont.)
• Fn nodes are named as fntype-number

• ADD-1

• Constant nodes are named by value

• CONSTANT[0]-2

• Third instance of the constant ‘0’

22Monday, April 27, 2009

Naming (cont.)
• Wires are named a little differently

• Because it’s dataflow, each wire retrieves
one terminal from one node

• Wire named after its source

CONSTANT[0]-2<_T_0>

23Monday, April 27, 2009

Naming (cont.)
• Diagram inputs are named by label

• Diagram structures are also named by label

• Function terminals are named by LabVIEW
term-name field

• Output terminal of assertion diagrams is
named :ASN

24Monday, April 27, 2009

ACL2 Model

• Nodes have input and output terminals
(wire ports)

• Each node takes a record (IN) as input

• Returns output record

• Wires extract values from records

25Monday, April 27, 2009

Translation
(DEFUN-N CONSTANT[0]-0 (IN)
 (S* :|_T_0| 0))

(DEFUN-W CONSTANT[0]-0<_T_0> (IN)
 (G :|_T_0| (CONSTANT[0]-0 IN)))

(DEFUN-N INCREMENT-0 (IN)
 (S* :X+1 (1+ (CONSTANT[0]-0<_T_0>

 IN))))

26Monday, April 27, 2009

Translation
(DEFUN-N CONSTANT[0]-0 (IN)
 (S* :|_T_0| 0))

(DEFUN-W CONSTANT[0]-0<_T_0> (IN)
 (G :|_T_0| (CONSTANT[0]-0 IN)))

(DEFUN-N INCREMENT-0 (IN)
 (S* :X+1 (1+ (CONSTANT[0]-0<_T_0>

 IN))))

• (S* :key1 val1 :key2 val2 ...) creates new
record binding :keyi to vali (“set”)

26Monday, April 27, 2009

Translation
(DEFUN-N CONSTANT[0]-0 (IN)
 (S* :|_T_0| 0))

(DEFUN-W CONSTANT[0]-0<_T_0> (IN)
 (G :|_T_0| (CONSTANT[0]-0 IN)))

(DEFUN-N INCREMENT-0 (IN)
 (S* :X+1 (1+ (CONSTANT[0]-0<_T_0>

 IN))))

• (S* :key1 val1 :key2 val2 ...) creates new
record binding :keyi to vali (“set”)

• (G :key rec) returns the value associated
with :key in rec (“get”)

26Monday, April 27, 2009

Our Approach (cont.)
• Translate assertions into proof obligations

(DEFTHM ASSERTION-BLOCK-HOLDS
 (IMPLIES (AND (NATP (G :NUMBER IN)))
 (G :ASN (ASSERTION-BLOCK IN))))

27Monday, April 27, 2009

Caveats
• We use unbounded arithmetic, so this is a

theorem for us, but not for LabVIEW/G

• We view this as verifying a slightly
“idealized” form of LabVIEW/G

28Monday, April 27, 2009

LabVIEW Loops
• We separate for-loop structures into 4

ACL2 functions

• $step function

• Executes loop body and binds outputs to
next iteration inputs

(DEFUN FOR-LOOP$STEP (IN)
(S :|_T_4| (G :|_T_1| (|_N_5| IN)) IN))

29Monday, April 27, 2009

LabVIEW Loops (cont.)
• $loop function

• Compares loop counter to loop bound

• Updates loop counter and calls $step fn
(DEFUN FOR-LOOP$LOOP (N IN)
(DECLARE (XARGS :MEASURE (NFIX (- N (G :LC IN)))))
(COND ((OR (>= (G :LC IN) N)

(NOT (NATP N))
(NOT (NATP (G :LC IN))))

IN)
(T (FOR-LOOP$LOOP N (S :LC (1+ (G :LC IN))

(FOR-LOOP$STEP IN))))))

30Monday, April 27, 2009

LabVIEW Loops (cont.)
• $init function

• Binds loop variables to initial values

(DEFUN FOR-LOOP$LOOP$INIT (IN)
(S* :LC 0

:|_T_2| (CONSTANT[10]-1<_T_0> IN)
:|_T_4| (CONSTANT[0]-0<_T_0> IN)))

31Monday, April 27, 2009

LabVIEW Loops (cont.)
• Top function

• Binds loop bound and calls $loop fn with
results of $init fn

(DEFUN-N FOR-LOOP (IN)
(FOR-LOOP-SRN$LOOP (CONSTANT[10]-1<_T_0> IN)

(FOR-LOOP-SRN$LOOP$INIT IN)))

32Monday, April 27, 2009

LabVIEW Structures
• LabVIEW loops are split into inner and

outer structures

• Inner structures are called “Self-reference
Nodes” (SRN)

• SRN nodes contain the body of the loop

• Outer nodes map external values to
internal names

33Monday, April 27, 2009

Top Loop Assertions
• Assertions about loops (in general) require

inductive proofs

• We split loop assertions into “top”
assertions and loop invariants

34Monday, April 27, 2009

Loop Assertions (cont.)

35Monday, April 27, 2009

Loop Invariant

36Monday, April 27, 2009

Top Loop Assertion

37Monday, April 27, 2009

Proving Loop
Assertions

• Hold the user’s hand to prove invariants

• Autogenerate highly structured proof
scaffolding

• Strictly guide proof process by way of
theory control

38Monday, April 27, 2009

Proof Scaffolding
• Generate 13 lemmas, 6 predicates

• 4 lemmas potentially require user
assistance

• All other lemmas (should) be automatic

• Generated file has ~50 lines of comments

• User assisted lemmas are marked

39Monday, April 27, 2009

Generic Theory
• We use a generic theory to avoid induction

in the invariant proof

• Use encapsulate to define a generic
$step, $loop

• Prove that if $prop holds on entry to
$loop and is preserved by $step then it
holds when $loop is run

40Monday, April 27, 2009

Example Diagram

41Monday, April 27, 2009

Example Diagram

42Monday, April 27, 2009

Our Goal

(DEFTHM ACL2-TOP-ASN$INV
 (IMPLIES (GAUSS$INPUT-HYPS IN)
 (G :ASN (ACL2-TOP-ASN IN))))

43Monday, April 27, 2009

Our Goal

• But we can’t prove this immediately

(DEFTHM ACL2-TOP-ASN$INV
 (IMPLIES (GAUSS$INPUT-HYPS IN)
 (G :ASN (ACL2-TOP-ASN IN))))

43Monday, April 27, 2009

Extend Loop Invariant
(DEFUN LOOP-INV-SRN$PROP (N IN)
 (DECLARE (IGNORABLE N))
 (AND (LOOP-INV-SRN$HYPS IN)
 (EQUAL N (G :|_T_2| IN))
 (G :ASN (ACL2-LOOP-INV IN))))

• LOOP-INV-SRN$HYPS is a type predicate that recognizes the
types on the inputs to LOOP-INV-SRN

• ACL2-LOOP-INV is the name of the loop invariant

44Monday, April 27, 2009

Loop Inv. is Preserved
(DEFTHMDL LOOP-INV-SRN$PROP{FOR-LOOP-SRN$STEP}
 (IMPLIES (AND (NATP (G :LC IN))
 (< (G :LC IN) N)
 (LOOP-INV-SRN$PROP N IN))
 (LOOP-INV-SRN$PROP N
 (S :LC (1+ (G :LC IN))
 (FOR-LOOP-SRN$STEP IN)))))

• Defthmdl is a macro for (local (defthmd foo ...))

45Monday, April 27, 2009

Use Generic Theory
(DEFTHML LOOP-INV-SRN$PROP{FOR-LOOP-SRN}
 (IMPLIES (AND (NATP N)
 (NATP (G :LC IN))
 (LOOP-INV-SRN$PROP N IN))
 (LOOP-INV-SRN$PROP N (FOR-LOOP-SRN$LOOP N IN)))
 :HINTS
 (("Goal" :BY (:FUNCTIONAL-INSTANCE
 LOOP-GENERIC-THM
 (STEP-GENERIC FOR-LOOP-SRN$STEP)
 (PROP-GENERIC LOOP-INV-SRN$PROP)
 (LOOP-GENERIC FOR-LOOP-SRN$LOOP))
 :IN-THEORY
 (UNION-THEORIES '(LOOP-INV-SRN$PROP{FOR-LOOP-SRN$STEP})
 (THEORY 'MINIMAL-THEORY))
 :EXPAND ((|FOR-LOOP-SRN$LOOP| N IN))))
 :RULE-CLASSES NIL)

46Monday, April 27, 2009

Inv Holds on Input, with
type hyps

(DEFTHML ACL2-LOOP-INV$INV{INIT}
 (IMPLIES (ACL2-LOOP-INV$INV{PRE} IN)
 (LOOP-INV-SRN$PROP (ARRAY-SIZE-0<SIZE(S)> IN)
 (LOOP-INV-SRN$PROP$INIT IN)))
 :RULE-CLASSES NIL)

47Monday, April 27, 2009

Loop Inv. Holds w/o
type hyps

(DEFTHML ACL2-LOOP-INV$INV
 (IMPLIES (ZERO-ARRAY$INPUT-HYPS IN)
 (ACL2-LOOP-INV$INV+ IN))
 :HINTS
 (("Goal"
 :IN-THEORY
 (UNION-THEORIES '(ACL2-LOOP-INV$INV{PRE})
 (THEORY 'MINIMAL-THEORY))
 :USE (ACL2-LOOP-INVINVCONDITIONAL
 ACL2-LOOP-INV$INV{PRE}{HOLDS})))
 :RULE-CLASSES NIL)

48Monday, April 27, 2009

Loop counter = Loop
bound

(DEFTHML LC$FOR-LOOP-SRN
 (IMPLIES (AND (NATP N)
 (NATP (G :LC IN))
 (<= (G :LC IN) N))
 (EQUAL (G :LC (FOR-LOOP-SRN$LOOP N IN)) N))
 :HINTS (("Goal" :BY (:FUNCTIONAL-INSTANCE
 LOOP-GENERIC-LC
 (STEP-GENERIC FOR-LOOP-SRN$STEP)
 (PROP-GENERIC LOOP-INV-SRN$PROP)
 (LOOP-GENERIC FOR-LOOP-SRN$LOOP))
 :IN-THEORY (THEORY 'MINIMAL-THEORY)
 :EXPAND ((FOR-LOOP-SRN$LOOP N IN)))))

49Monday, April 27, 2009

Top Inv. Holds

• Uses several small lemmas not shown here

(DEFTHM ACL2-TOP-ASN$INV
 (IMPLIES (GAUSS$INPUT-HYPS IN)
 (G :ASN (ACL2-TOP-ASN IN)))
 :HINTS (("Goal" :IN-THEORY (DISABLE |FOR-LOOP-SRN$LOOP|)
 :USE (ACL2-LOOP-INV$INV
 LEMMA-2-ACL2-LOOP))))

50Monday, April 27, 2009

Lemma Library

• Lemmas about LabVIEW primitives
essential to automatic proofs

• Primitive definitions are disabled by default
to (weakly) remove dependence upon
defintions

• Currently ~80 theorems

51Monday, April 27, 2009

Not Shown Here

• LabVIEW/G diagrams can use ACL2
functions for specifications

• Existential ghost variables for specifications

• Pick-a-point strategies

• By-hand approach to compositionality

52Monday, April 27, 2009

Future Work
• Compositional Verification

• Initial Approach done by hand

• Use encapsulate to export diagram
properties

• Use bounded arithmetic

• Use encapsulate for primitive definitions

• Diagrams containing state

53Monday, April 27, 2009

Conclusion

• Prototype system for verifying LabVIEW
diagrams

• About a dozen (fully automatic) examples
completed

• Feasibility of approach has been proven (for
state-free diagrams)

54Monday, April 27, 2009

Thanks
• J, for advising me these past 2 years

• Matt, for teaching me all about ACL2

• Jacob, JeffK and NI, for making this project possible

• My committee, the ACL2 seminar and Jessica, for
helpful comments on the presentation and thesis

• My roommates, Yonatan and David Reaves, for all
the support over the past couple of years

55Monday, April 27, 2009

